Pythagoras' Slanting Sangaku

Geometry Level 4

The diagram above illustrates a rectangle, containing two identical red circles and one cyan circle. Both cyan and red circles are tangent to the hypotenuse of the triangle whose incircle is a red circle. The length of the red segment formed by those two intersection points is 12 12 .

Input the area of the rectangle as your answer.


The answer is 672.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 19, 2021

Label the rectangle A B C D ABCD , the right triangle A B E ABE , circles centers O O , P P , and Q Q , O F OF and Q G QG perpendicular to B E BE , P H PH and P I PI are perpendicular to D A DA and A B AB , and Q J QJ perpendicular to O F OF . Let the radii of the red circle and the blue circle be r r and R R respectively.

Then the red segment F G = Q J = O Q 2 O J 2 = ( R + r ) 2 ( R r ) 2 = 2 r R = 12 r R = 36 FG = QJ = \sqrt{OQ^2-OJ^2} = \sqrt{(R+r)^2-(R-r)^2} = 2\sqrt{rR} = 12 \implies rR = 36 . Let A B E = θ \angle ABE = \theta . Then

A B = A I + I B 2 R = r + r cot θ 2 Let t = tan θ 2 2 r R = r 2 + r 2 t Note that r R = 36 r 2 = 72 t 1 + t \begin{aligned} AB & = AI + IB \\ 2R & = r + r \cot \frac \theta 2 & \small \blue{\text{Let }t = \tan \frac \theta 2} \\ 2rR & = r^2 + \frac {r^2}t & \small \blue{\text{Note that }rR = 36} \\ \implies r^2 & = \frac {72t}{1+t} \end{aligned}

And

B E = B G + F G + E F A B sec θ = r cot ( 9 0 θ 2 ) + 12 + R cot ( 9 0 + θ 2 ) 2 R cos θ = r cot ( 4 5 θ 2 ) + 12 + R cot ( 4 5 + θ 2 ) 2 R 1 + t 2 1 t 2 = r 1 + t 1 t + 12 + R 1 t 1 + t Multiply both sides by r 72 1 + t 2 1 t 2 = 1 + t 1 t r 2 + 12 r + 36 1 t 1 + t Note that r R = 36 72 1 + t 2 1 t 2 = 1 + t 1 t 72 t 1 + t + 12 r + 36 1 t 1 + t and r 2 = 72 t 1 + t 6 + 6 t 2 1 t 2 = 6 t 1 t + r + 3 3 t 1 + t r = 3 ( 1 t 2 ) 1 t 2 = 3 \begin{aligned} BE & = BG + FG + EF \\ AB \cdot \sec \theta & = r \cot \left(\frac {90^\circ -\theta}2\right) + 12 + R \cot \left(\frac {90^\circ + \theta}2\right) \\ \frac {2R}{\cos \theta} & = r \cot \left(45^\circ - \frac \theta 2\right) + 12 + R \cot \left(45^\circ + \frac \theta 2\right) \\ 2R \cdot \frac {1+t^2}{1-t^2} & = r \cdot \frac {1+t}{1-t} + 12 + R \cdot \frac {1-t}{1+t} & \small \blue{\text{Multiply both sides by }r} \\ 72 \cdot \frac {1+t^2}{1-t^2} & = \frac {1+t}{1-t} \cdot r^2 + 12r + 36 \cdot \frac {1-t}{1+t} & \small \blue{\text{Note that }rR = 36} \\ 72 \cdot \frac {1+t^2}{1-t^2} & = \frac {1+t}{1-t} \cdot \frac {72t}{1+t} + 12r + 36 \cdot \frac {1-t}{1+t} & \small \blue{\text{and }r^2 = \frac {72t}{1+t}} \\ \frac {6+6t^2}{1-t^2} & = \frac {6t}{1-t} + r + \frac {3-3t}{1+t} \\ \implies r & = \frac {3(1-t^2)}{1-t^2} = 3 \end{aligned}

From r 2 = 72 t 1 + t t = 1 7 r^2 = \dfrac {72t}{1+t} \implies t = \dfrac 17 , R = 36 r = 12 R = \dfrac {36}r = 12 , B C = r cot ( 4 5 θ 2 ) + 12 + R = 3 1 + 1 7 1 1 7 + 12 + 12 = 28 BC = r \cot \left(45^\circ - \frac \theta 2\right) + 12 + R = 3 \cdot \dfrac {1+\frac 17}{1-\frac 17} + 12 + 12 = 28 , and the area of the rectangle A B B C = 2 12 28 = 672 AB \cdot BC = 2 \cdot 12 \cdot 28 = \boxed{672} .

Label the figure as follows. Denote by R R the radius of the big circle and by r r the radius of the small ones. Let ϕ = H C G = G C J \phi =\angle HCG=\angle GCJ and θ = F C K = F C L \theta =\angle FCK=\angle FCL .

By Pythagoras’s theorem on right E F N \triangle EFN ,

F N = E F 2 E N 2 = ( R + r ) 2 ( R r ) 2 = 2 R r FN=\sqrt{E{{F}^{2}}-E{{N}^{2}}}=\sqrt{{{\left( R+r \right)}^{2}}-{{\left( R-r \right)}^{2}}}=2\sqrt{Rr} Hence,

2 R r = F N = I K = H L = 12 R r = 36 ( 1 ) 2\sqrt{Rr}=FN=IK=HL=12\Rightarrow Rr=36 \ \ \ \ \ (1) E F N \angle EFN and F C L \angle FCL are corresponding angles, thus, E F N = F C L = θ \angle EFN=\angle FCL=\theta

On E N F \triangle ENF ,
tan θ = E N N F = R r 12 ( 2 ) \tan \theta =\frac{EN}{NF}=\frac{R-r}{12} \ \ \ \ \ (2) On G C J \triangle GCJ ,
tan φ = G J J C = r 2 R r ( 3 ) \tan \varphi =\frac{GJ}{JC}=\frac{r}{2R-r} \ \ \ \ \ (3) Moreover,

2 θ + 2 φ = 90 φ = 45 θ tan φ = tan ( 45 θ ) = 1 tan θ 1 + tan θ ( 2 ) ( 3 ) r 2 R r = 1 R r 12 1 + R r 12 ( R 12 ) ( R r ) = 0 R r R = 12 \begin{aligned} 2\theta +2\varphi =90{}^\circ & \Rightarrow \varphi =45{}^\circ -\theta \\ & \Rightarrow \tan \varphi =\tan \left( 45{}^\circ -\theta \right)=\frac{1-\tan \theta }{1+\tan \theta } \\ & \overset{\left( 2 \right)\left( 3 \right)}{\mathop{\Rightarrow }}\,\frac{r}{2R-r}=\frac{1-\frac{R-r}{12}}{1+\frac{R-r}{12}} \\ & \Leftrightarrow \left( R-12 \right)\left( R-r \right)=0 \\ & \overset{R\ne r}{\mathop{\Rightarrow }}\,R=12 \\ \end{aligned} From ( 1 ) (1) we get r = 3 r=3 , hence, ( 2 ) tan θ = 3 4 \left( 2 \right)\Rightarrow \tan \theta =\frac{3}{4} . On E I C \triangle EIC ,

I C = E I tan θ = R tan θ = 12 3 4 = 16 IC=\frac{EI}{\tan \theta }=\frac{R}{\tan \theta }=\frac{12}{\frac{3}{4}}=16 Hence, for the dimentions of A B C D ABCD we have B C = B I + I C = R + I C = 12 + 16 = 28 BC=BI+IC=R+IC=12+16=28 and A B = 2 R = 24 AB=2R=24 Finally, for the area of the quadtrilateral, [ A B C D ] = A B B C = 24 × 28 = 672 \left[ ABCD \right]=AB\cdot BC=24\times 28=\boxed{672}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...