Pythagorean Theorem

Geometry Level 2

The three vertices of a triangle are (4,5), (-2,1), and (4,-8). Is this a right triangle?

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Compute for the length of each side using the distance formula .

a = [ ( 4 ( 2 ) ] 2 + ( 5 1 ) 2 = 6 2 + 4 2 = 36 + 16 = 52 = 4 × 13 = 2 13 a=\sqrt{[(4-(-2)]^2+(5-1)^2}=\sqrt{6^2+4^2}=\sqrt{36+16}=\sqrt{52}=\sqrt{4 \times13}=2\sqrt{13}

b = [ 1 ( 8 ) ] 2 + ( 2 4 ) 2 = 9 2 + 6 2 = 81 + 36 = 117 = 9 × 13 = 3 13 b=\sqrt{[1-(-8)]^2+(-2-4)^2}=\sqrt{9^2+6^2}=\sqrt{81+36}=\sqrt{117}=\sqrt{9 \times13}=3\sqrt{13}

c = ( 4 4 ) 2 + [ ( 5 ( 8 ) ] 2 = 1 3 2 = 13 c=\sqrt{(4-4)^2+[(5-(-8)]^2}=\sqrt{13^2}=13

By the pythagorean theorem , we have

c 2 = a 2 + b 2 c^2 = a^2+b^2

1 3 2 = ( 2 13 ) 2 + ( 3 13 ) 2 13^2=(2\sqrt{13})^2+(3\sqrt{13})^2

169 = 4 ( 13 ) + 9 ( 13 169=4(13)+9(13

169 = 52 + 117 169=52+117

169 = 169 169=169 \large\implies The statement is true. \text{The statement is true.}

W e t h e r e f o r e c o n c l u d e t h a t t h e p o i n t s ( 4 , 5 ) , ( 2 , 1 ) a n d ( 4 , 8 ) a r e v e r t i c e s o f a r i g h t t r i a n g l e . \boxed{\color{#D61F06}\large We~therefore~conclude~that~the~points~(4,5),(-2,1)~and~(4,-8)~are~vertices~of~a~right~triangle.}

Solving for the distances using the formula, d = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 \large d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ,

a = ( 4 + 2 ) 2 + ( 5 1 ) 2 = 52 a = \sqrt{(4+2)^2 + (5-1)^2} = \sqrt{52}

b = ( 4 + 2 ) 2 + ( 8 1 ) 2 = 117 b = \sqrt{(4+2)^2 + (-8-1)^2} = \sqrt{117}

c = ( 4 4 ) 2 + ( 8 5 ) 2 = 13 c = \sqrt{(4-4)^2 + (-8-5)^2} = 13

Now by Pythagorean theorem, check if it is a right triangle

a 2 + b 2 = c 2 a^2 + b^2 = c^2

( 52 ) 2 + ( 117 ) 2 = 1 3 2 (\sqrt{52})^2 + (\sqrt{117})^2 = 13^2

52 + 117 = 169 52 + 117 = 169

169 = 169 169 = 169 \implies t r u e true

I t i s a r i g h t t r i a n g l e . \color{#3D99F6}\boxed{\therefore {It~is~a~right~triangle.}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...