Pythagorean Triples in Disguise?

There are n n nonnegative integral solutions to the equation

( x 2 y 2 ) 2 = 16 y + 1 (x^2-y^2)^2=16y+1

obviously all in the form ( x 1 , y 1 ) , ( x 2 , y 2 ) , , ( x n , y n ) (x_1, y_1), (x_2, y_2),\dots,(x_n, y_n) . Compute

a = 1 n x a + y a \sum_{a=1}^{n}x_a+y_a


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Souryajit Roy
Jul 11, 2014

We must have y 0 y≥0 .As the right hand side is non-zero,so must be the left hand side,hence x y + 1 |x|≥|y|+1 or x y 1 |x|≤|y|-1 .

In either case ( x 2 y 2 ) 2 ( 2 y 1 ) 2 (x^{2}-y^{2})^{2}≥(2y-1)^{2} ,so ( 2 y 1 ) 2 1 + 16 y (2y-1)^{2}≤1+16y .

Solving the inequation we get y 5 y≤5 .Trying all such values of y y yield the solutions.

Ronak Agarwal
Jul 1, 2014

I will be writing a little long solution .

From the given question 16 y + 1 16y+1 is a perfect square. So we take 16 y + 1 = n 2 16y+1={ n }^{ 2 } where n ϵ I n\epsilon I . Our equation becomes x 2 y 2 = ± n { x }^{ 2 }-{ y }^{ 2 }=\pm n

16 y = ( n + 1 ) ( n 1 ) \Rightarrow 16y=(n+1)(n-1) .

Now n n can't be even.

Because then ( n + 1 ) , ( n 1 ) (n+1),(n-1) would become odd.

Also n n is not of the form 8 k + 3 ( k ϵ I ) 8k+3(k\epsilon I) because then

16 y = ( 8 k + 2 ) ( 8 k + 4 ) 2 y = ( 4 k + 1 ) ( 2 k + 1 ) 16y=(8k+2)(8k+4)\quad \Rightarrow 2y=(4k+1)(2k+1)\quad Hence not possible.

So n n is either of the form 8 k + 1 , 8 k 1 8k+1,8k-1 .

Let the counting begin.

The values of n = 1 , 7 , 9 , 15 , 17 , 23 , 25......... n=1,7,9,15,17,23,25.........

The corresponding values of y = 0 , 3 , 5 , 14 , 18 , 33 , 39.... y=0,3,5,14,18,33,39....

Solving for x x y = 0 , x = 1 y = 3 , x = 4 ( x 2 9 = ± 7 ) y = 5 , x = 4 ( w e a r e t a k i n g e i t h e r t h e p o s i t i v e o r n e g a t i v e n i n t h e e q u a t i o n x 2 y 2 = ± n f o r g e t t i n g s o l u t i o n s o f x ) \\ y=0,x=1\quad \\ y=3,x=4\quad ({ x }^{ 2 }-9=\pm 7)\\ y=5,x=4\quad (we\quad are\quad taking\quad either\quad the\quad positive\quad or\quad negative\quad n\quad in\quad the\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad equation\quad { x }^{ 2 }-{ y }^{ 2 }=\pm n\quad for\quad getting\quad solutions\quad of\quad x)

We have to now prove that for y 14 y\ge 14 no positive integer x exists.

C a s e 1 x y + 1 ( F o r t h e e q u a t i o n x 2 y 2 = n ) N o w x 2 y 2 + 2 y + 1 y 2 + n y 2 + 2 y + 1 n 2 y + 1 n 1 ( n 2 1 ) / 8 S o 0 n 2 8 n + 7 h e n c e n ϵ [ 1 , 7 ] y c a n b e 0 , 3 C a s e 2 x y 1 ( F o r t h e e q u a t i o n x 2 y 2 = n ) N o w x 2 y 2 2 y + 1 y 2 n y 2 2 y + 1 ( n 2 1 ) / 8 n + 1 S o n 2 8 n 9 0 h e n c e n ϵ [ 1 , 9 ] y c a n b e 0 , 3 , 5 S o w e h a v e p r o v e d t h a t t h e s e a r e t h e o n l y s o l u t i o n s . Case-1\quad x\ge y+1\quad (For\quad the\quad equation\quad { x }^{ 2 }-{ y }^{ 2 }=n)\\ Now\quad { x }^{ 2 }\ge { y }^{ 2 }+2y+1\\ \Rightarrow { y }^{ 2 }+n\ge { y }^{ 2 }+2y+1\\ \Rightarrow n\ge 2y+1\\ \Rightarrow { n }-1\ge ({ n }^{ 2 }-1)/8\quad \quad So\quad 0\ge { n }^{ 2 }-8n+7\quad hence\quad n\epsilon [1,7]\\ \Rightarrow y\quad can\quad be\quad 0,3\\ Case-2\quad x\le y-1\quad (For\quad the\quad equation\quad { x }^{ 2 }-{ y }^{ 2 }=-n\quad )\\ Now\quad { x }^{ 2 }\le { y }^{ 2 }-2y+1\\ \Rightarrow { y }^{ 2 }-n\le { y }^{ 2 }-2y+1\\ \Rightarrow ({ n }^{ 2 }-1)/8\le n+1\quad \quad So\quad { n }^{ 2 }-8n-9\le 0\quad hence\quad n\epsilon [-1,9]\\ \Rightarrow y\quad can\quad be\quad 0,3,5\\ So\quad we\quad have\quad proved\quad that\quad these\quad are\quad the\quad only\quad solutions.\quad \\ \\

Hence a = 1 n x a + y a = 17 \sum _{ a=1 }^{ n }{ { x }_{ a }+{ y }_{ a } } =17 Please notify me about any typing mistakes since it was a long solution

Perfect! You have the exact solution I was looking for (look at the tags for the problem). Great job my friend!

Finn Hulse - 6 years, 11 months ago

Log in to reply

I was initially using a completely different approach but I got stuck But then I got the correct method to do it

Ronak Agarwal - 6 years, 11 months ago
Vinod Kumar
May 12, 2020

Solve Diophantus and sum is 17.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...