There are n nonnegative integral solutions to the equation
( x 2 − y 2 ) 2 = 1 6 y + 1
obviously all in the form ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) . Compute
a = 1 ∑ n x a + y a
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I will be writing a little long solution .
From the given question 1 6 y + 1 is a perfect square. So we take 1 6 y + 1 = n 2 where n ϵ I . Our equation becomes x 2 − y 2 = ± n
⇒ 1 6 y = ( n + 1 ) ( n − 1 ) .
Now n can't be even.
Because then ( n + 1 ) , ( n − 1 ) would become odd.
Also n is not of the form 8 k + 3 ( k ϵ I ) because then
1 6 y = ( 8 k + 2 ) ( 8 k + 4 ) ⇒ 2 y = ( 4 k + 1 ) ( 2 k + 1 ) Hence not possible.
So n is either of the form 8 k + 1 , 8 k − 1 .
Let the counting begin.
The values of n = 1 , 7 , 9 , 1 5 , 1 7 , 2 3 , 2 5 . . . . . . . . .
The corresponding values of y = 0 , 3 , 5 , 1 4 , 1 8 , 3 3 , 3 9 . . . .
Solving for x y = 0 , x = 1 y = 3 , x = 4 ( x 2 − 9 = ± 7 ) y = 5 , x = 4 ( w e a r e t a k i n g e i t h e r t h e p o s i t i v e o r n e g a t i v e n i n t h e e q u a t i o n x 2 − y 2 = ± n f o r g e t t i n g s o l u t i o n s o f x )
We have to now prove that for y ≥ 1 4 no positive integer x exists.
C a s e − 1 x ≥ y + 1 ( F o r t h e e q u a t i o n x 2 − y 2 = n ) N o w x 2 ≥ y 2 + 2 y + 1 ⇒ y 2 + n ≥ y 2 + 2 y + 1 ⇒ n ≥ 2 y + 1 ⇒ n − 1 ≥ ( n 2 − 1 ) / 8 S o 0 ≥ n 2 − 8 n + 7 h e n c e n ϵ [ 1 , 7 ] ⇒ y c a n b e 0 , 3 C a s e − 2 x ≤ y − 1 ( F o r t h e e q u a t i o n x 2 − y 2 = − n ) N o w x 2 ≤ y 2 − 2 y + 1 ⇒ y 2 − n ≤ y 2 − 2 y + 1 ⇒ ( n 2 − 1 ) / 8 ≤ n + 1 S o n 2 − 8 n − 9 ≤ 0 h e n c e n ϵ [ − 1 , 9 ] ⇒ y c a n b e 0 , 3 , 5 S o w e h a v e p r o v e d t h a t t h e s e a r e t h e o n l y s o l u t i o n s .
Hence ∑ a = 1 n x a + y a = 1 7 Please notify me about any typing mistakes since it was a long solution
Perfect! You have the exact solution I was looking for (look at the tags for the problem). Great job my friend!
Log in to reply
I was initially using a completely different approach but I got stuck But then I got the correct method to do it
Solve Diophantus and sum is 17.
Problem Loading...
Note Loading...
Set Loading...
We must have y ≥ 0 .As the right hand side is non-zero,so must be the left hand side,hence ∣ x ∣ ≥ ∣ y ∣ + 1 or ∣ x ∣ ≤ ∣ y ∣ − 1 .
In either case ( x 2 − y 2 ) 2 ≥ ( 2 y − 1 ) 2 ,so ( 2 y − 1 ) 2 ≤ 1 + 1 6 y .
Solving the inequation we get y ≤ 5 .Trying all such values of y yield the solutions.