Matrix (JEE)

Algebra Level 4

Let P = [ 1 0 0 4 1 0 16 4 1 ] P= \begin{bmatrix}1 & 0& 0\\ 4& 1 & 0\\ 16 & 4 & 1 \end{bmatrix} . If Q = [ q i j ] Q = [q_{ij}] is a matrix such that:

Q = a 18 = 1 M a 17 = 1 a 18 . . . N = 1 a 1 P N : q 11 2 q 21 2 + q 31 q 33 = 0 , then 7 ( q 31 + q 32 q 21 ) equals Q = \sum_{a_{18}=1}^{M}\sum_{a_{17}=1}^{a_{18}}...\sum_{N=1}^{a_1} P^N : q_{11}^2 - q_{21}^2 + q_{31}q_{33} =0 \text{, then } 7 \left(\dfrac{q_{31}+q_{32}}{q_{21}} \right) \text{ equals}


The answer is 55.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sid Patak
Feb 16, 2021

P = [ 1 0 0 4 1 0 16 4 1 ] , P= \begin{bmatrix}1 & 0& 0\\ 4& 1 & 0\\ 16 & 4 & 1 \end{bmatrix}, P 2 = [ 1 0 0 8 1 0 16 3 8 1 ] , P^2= \begin{bmatrix}1 & 0& 0\\ 8& 1 & 0\\ 16*3 & 8 & 1 \end{bmatrix}, P 3 = [ 1 0 0 12 1 0 16 6 12 1 ] , P^3= \begin{bmatrix}1 & 0& 0\\ 12& 1 & 0\\ 16*6 & 12 & 1 \end{bmatrix}, P 4 = [ 1 0 0 16 1 0 16 10 16 1 ] P^4= \begin{bmatrix}1 & 0& 0\\ 16& 1 & 0\\ 16*10 & 16 & 1 \end{bmatrix} \\

Here we see some patterns: 4,8,12,16 is an AP with with difference 4 and nth term of 1,3,6,10 is sum of first n terms, hence:

P N = [ 1 0 0 4 N 1 0 16 n ( n + 1 ) 2 4 N 1 ] P^N= \begin{bmatrix}1 & 0& 0\\ 4N& 1 & 0\\ 16 \dfrac{n(n+1)}{2} &4N & 1 \end{bmatrix} \\ .

N = 1 a 1 P N = N = 1 a 1 [ 1 0 0 4 N 1 0 16 n ( n + 1 ) 2 4 N 1 ] = [ a 1 0 0 4 a 1 ( a 1 + 1 ) 2 a 1 0 16 a 1 ( a 1 + 1 ) ( a 1 + 2 ) 3 2 4 a 1 ( a 1 + 1 ) 2 a 1 ] \sum_{N=1}^{a_1} P^N =\sum_{N=1}^{a_1} \begin{bmatrix}1 & 0& 0\\ 4N& 1 & 0\\ 16 \dfrac{n(n+1)}{2} &4N & 1 \end{bmatrix} = \begin{bmatrix}a_1 & 0& 0\\ 4\dfrac{a_1(a_1+1)}{2}& a_1 & 0\\ 16 \dfrac{a_1(a_1+1)(a_1+2)}{3*2} &4\dfrac{a_1(a_1+1)}{2} & a_1 \end{bmatrix} \\

a 1 = 1 a 2 N = 1 a 1 P N = a 1 = 1 a 2 [ a 1 0 0 4 a 1 ( a 1 + 1 ) 2 a 1 0 16 a 1 ( a 1 + 1 ) ( a 1 + 2 ) 3 2 4 a 1 ( a 1 + 1 ) 2 a 1 ] = [ a 2 ( a 2 + 1 ) 2 0 0 4 a 2 ( a 2 + 1 ) ( a 2 + 2 ) 3 2 a 2 ( a 2 + 1 ) 2 0 16 a 2 ( a 2 + 1 ) ( a 2 + 2 ) ( a 2 + 3 ) 4 3 2 4 a 2 ( a 2 + 1 ) ( a 2 + 2 ) 3 2 a 2 ( a 2 + 1 ) 2 ] \sum_{a_1=1}^{a_2} \sum_{N=1}^{a_1} P^N =\sum_{a_1=1}^{a_2} \begin{bmatrix}a_1 & 0& 0\\ 4\dfrac{a_1(a_1+1)}{2}& a_1 & 0\\ 16 \dfrac{a_1(a_1+1)(a_1+2)}{3*2} &4\dfrac{a_1(a_1+1)}{2} & a_1 \end{bmatrix} = \begin{bmatrix}\dfrac{a_2(a_2+1)}{2} & 0& 0\\ 4\dfrac{a_2(a_2+1)(a_2+2)}{3*2}& \dfrac{a_2(a_2+1)}{2} & 0\\ 16 \dfrac{a_2(a_2+1)(a_2+2)(a_2+3)}{4*3*2} &4\dfrac{a_2(a_2+1)(a_2+2)}{3*2} & \dfrac{a_2(a_2+1)}{2}\end{bmatrix} \\

Here we see the below pattern (which can be proved by math induction here ):

k = 1 n k ( k + 1 ) ( k + 2 ) ( k + r ) = n ( n + 1 ) ( n + 2 ) ( n + r + 1 ) r + 2 \sum_{k=1}^{n}k(k+1)(k+2)\cdots(k+r) = \frac{n(n+1)(n+2)\cdots(n+r+1)}{r+2}

Q = a 18 = 1 M a 17 = 1 a 18 . . . N = 1 a 1 P N = [ M ( M + 1 ) . . . ( M + 18 ) 19 ! 0 0 4 M ( M + 1 ) ( M + 19 ) 20 ! M ( M + 1 ) . . . ( M + 18 ) 19 ! 0 16 M ( M + 1 ) . . . ( M + 20 ) 21 ! 4 M ( M + 1 ) ( M + 19 ) 20 ! M ( M + 1 ) . . . ( M + 18 ) 19 ! ] \therefore Q = \sum_{a_{18}=1}^{M}\sum_{a_{17}=1}^{a_{18}}...\sum_{N=1}^{a_1} P^N = \begin{bmatrix}\dfrac{M(M+1)...(M+18)}{19!} & 0& 0\\ 4\dfrac{M(M+1)(M+19)}{20!}& \dfrac{M(M+1)...(M+18)}{19!} & 0\\ 16 \dfrac{M(M+1)...(M+20)}{21!} &4\dfrac{M(M+1)(M+19)}{20!} & \dfrac{M(M+1)...(M+18)}{19!}\end{bmatrix} \\

Let q 11 = α = M ( M + 1 ) . . . ( M + 18 ) 19 ! , and α > 0 since M > 0 q_{11} = \alpha = \dfrac{M(M+1)...(M+18)}{19!}, \text{ and } \alpha > 0 \text{ since } M > 0 then Q = [ α 0 0 4 α M + 19 20 α 0 16 α ( M + 19 ) ( M + 20 ) 21 20 4 α M + 19 20 α ] Q = \begin{bmatrix}\alpha & 0& 0\\ 4\alpha\dfrac{M+19}{20}& \alpha & 0\\ 16 \alpha \dfrac{(M+19)(M+20)}{21*20} &4\alpha\dfrac{M+19}{20} & \alpha\end{bmatrix} \\

We are given q 11 2 q 21 2 + q 31 q 33 = 0 = α 2 ( 4 α M + 19 20 ) 2 + 16 α 2 ( M + 19 ) ( M + 20 ) 21 20 = 0 q_{11}^2 - q_{21}^2 + q_{31}q_{33} =0 \implies = \alpha^2 - (4\alpha\dfrac{M+19}{20})^2 + 16 \alpha^2 \dfrac{(M+19)(M+20)}{21*20} =0 \\

Since α 0 \alpha \neq 0 we can divide by α 2 \alpha^2 to get the relation 1 ( 4 M + 19 20 ) 2 + 16 ( M + 19 ) ( M + 20 ) 21 20 = 0 1 - (4\dfrac{M+19}{20})^2 + 16 \dfrac{(M+19)(M+20)}{21*20} =0\\

Solving the quadratic we get M = 16 , 34 , M > 0 M = 16 M=16,-34, M>0 \implies M =16\\

7 ( q 31 + q 32 q 21 ) = 7 ( 16 α ( M + 19 ) ( M + 20 ) 21 20 + 4 α M + 19 20 4 α M + 19 20 ) = 7 55 7 = 55 \therefore 7 \left(\dfrac{q_{31}+q_{32}}{q_{21}} \right) = 7 \left(\dfrac{16 \alpha\dfrac{(M+19)(M+20)}{21*20} +4\alpha\dfrac{M+19}{20}}{4\alpha\dfrac{M+19}{20}} \right) = 7*\dfrac{55}{7} = 55

i want a full solution

Pi Han Goh - 3 months, 3 weeks ago

Log in to reply

ok i wrote one... tell me if there are mistakes.

Sid Patak - 3 months, 3 weeks ago

Log in to reply

Yup, all checks out. Thanks.

This identity is beautiful:

k = 1 n k ( k + 1 ) ( k + 2 ) ( k + r ) = n ( n + 1 ) ( n + 2 ) ( n + r + 1 ) r + 2 \sum_{k=1}^{n}k(k+1)(k+2)\cdots(k+r) = \frac{n(n+1)(n+2)\cdots(n+r+1)}{r+2}

Pi Han Goh - 3 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...