Q. Determine the value of f(1).

Calculus Level 2

The given f ( x ) f(x) is a real function that is differentiable and satisfies f ( x ) + f ( x ) = x e x f(x) + f'(x) = xe^{-x} for all values of real x x . It is also given that f ( 0 ) = 0 f(0) = 0 . Find f ( 1 ) f(1) .

1 8 e \frac 1{8e} 1 2 e \frac 1{2e} 7 8 e \frac 7{8e} 1 4 e \frac 1{4e} 3 4 e \frac 3{4e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 25, 2018

f ( x ) + f ( x ) = x e x Multiply e x on both sides. e x f ( x ) + e x f ( x ) = x d d x e x f ( x ) = x e x f ( x ) = x 2 2 + C where C is the constant of integration. f ( x ) = x 2 e x + C e x Given that f ( 0 ) = 0 f ( 0 ) = 0 + C = 0 C = 0 f ( x ) = x 2 2 e x f ( 1 ) = 1 2 e \begin{aligned} f(x) + f'(x) & = xe^{-x} & \small \color{#3D99F6} \text{Multiply }e^x \text{ on both sides.} \\ e^xf(x) + e^xf'(x) & = x \\ \frac {d}{dx}e^xf(x) & = x \\ e^x f(x) & = \frac {x^2}2 + \color{#3D99F6} C & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ f(x) & = \frac {x^2}{e^x} + \frac C{e^x} & \small \color{#3D99F6} \text{Given that }f(0) = 0 \\ f(0) & = 0 + C = 0 & \small \color{#3D99F6} \implies C = 0 \\ \implies f(x) & = \frac {x^2}{2e^x} \\ f(1) & = \boxed{\dfrac 1{2e}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...