Q2: The Power of Triangles

Geometry Level 5

Find the number of solutions to the equation: cos n x sin n x = 1 \cos ^n x - \sin ^n x = 1 in the range 0 x < 2 π 0 \leq x < 2\pi , where n n ranges through all positive integers.


This problem is part of the set IMO Training: Set 1 . Please read the introductory note; this is not original!)


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Ng
Feb 16, 2016

First consider n 2 n \geq 2 .

Note that cos n x sin n x cos n x sin n x \cos ^n x - \sin ^n x \leq |\cos ^n x - \sin ^n x | Now we apply the 'trick' that is the triangle inequality ; that is, for any reals a , b a,b , a + b < a + b |a+b| < |a| + |b| . Then: cos n x sin n x cos n x + sin n x = cos n x + sin n x cos 2 x + sin 2 x = 1 |\cos ^n x - \sin ^n x | \leq |\cos ^n x| + |-\sin ^n x| = |\cos ^n x| + |\sin ^n x| \leq \cos ^2 x + \sin ^2 x = 1 Therefore sin 2 x = sin n x , cos 2 x = cos n x \sin^2 x = |\sin ^n x|, \cos^2 x = |\cos ^n x| .

From this we find the solutions 0 , π , 3 π 2 0,\pi,\frac{3\pi}{2} .

In the case of n = 1 n = 1 , we have cos x sin x = 1 \cos x - \sin x = 1 , and applying the R method we find that sin ( x π 4 ) = 1 2 \sin(x - \frac{\pi}{4}) = -\frac{1}{\sqrt{2}} , giving the solutions 0 , 3 π 2 0, \frac{3\pi}{2} .

Therefore there are 3 \boxed{3} unique solutions in total.

damn i thought 2pi was included in the interval but nice one!!

Rohith M.Athreya - 5 years, 3 months ago

Is this IMO Problem ? If it is then can you tell us what year the problem was posted?

Stojan Samojlovski - 4 years, 4 months ago

C o s n X S i n n X = 1. i f C o s n X , S i n n X h a s i r r a t i o n a l c o m p o n e n t , C o s n X , S i n n X m u s t b e o f t h e t y p e , a ± m p a n d b ± m p , a , b 0. There is no X that satisfies this.......(X=45, a=b=0). L e t C o s n X , a n d S i n n X be pure fractions. They must have a common denominator and still C o s n X S i n n X = 1. T h e r e i s n o s u c h X . S o t h e o n l y p o s s i b i l i t y i s C o s n X = 0 o r 1 w i t h S i n n X = 1 o r 0. C o s n X = 0 a n d S i n n X = 1 , w h e n X = 270 f o r a l l o d d n . C o s n X = 1 a n d S i n n X = 0 , w h e n X = 0 O R X = 180 f o r a l l e v e n n . Cos^nX-Sin^nX=1.\\ \therefore~if~Cos^nX,Sin^nX ~has~irrational~component,~Cos^nX,Sin^nX~must~be~of~the~type,~a\pm\sqrt[p]m ~and~b\pm\sqrt[p]m,~~a, b\neq 0.\\ \text{There is no X that satisfies this.......(X=45, a=b=0).}\\ Let~ Cos^nX,~ and~ Sin^nX \text{ be pure fractions. They must have a common denominator and still } Cos^nX- Sin^nX=1.\\ There~is ~no~such~X.\\ So~ the~ only~ possibility~ is ~~~Cos^nX=0 ~~or~ ~1~~~~~ with~~~~~ Sin^nX= - 1~~ or~~ 0.\\ Cos^nX=0~~and~~Sin^nX= - 1, ~when~X=270 ~~~for~ all~ odd~ n.\\ Cos^nX=1~~and~~Sin^nX= 0, ~when~X=0~~OR~~X=180~~for~all~even~ n.\\
Three solutions for X=0, X=180, X= 270.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...