Q5

Geometry Level 3

If D= 1 c o s ϑ 1 s i n ϑ 1 c o s ϑ 1 s i n ϑ 1 \begin{vmatrix} 1 & cos\vartheta & 1 \\ -sin\vartheta & 1 & -cos\vartheta \\ -1 & sin\vartheta & 1 \end{vmatrix} then D lies in the interval:

[2,4] [0,4] [ 2 2 , 2 + 2 2-\sqrt { 2 } ,2+\sqrt { 2 } ] [-2,2]

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Apr 10, 2020

If one computes the above 3x3 determinant, the result is D ( θ ) = 2 + sin 2 θ + cos 2 θ D(\theta) = 2 + \sin2\theta + \cos2\theta . The range of D D can be determined via its first & second derivatives:

D ( θ ) = 0 2 cos 2 θ 2 sin 2 θ = 0 tan 2 θ = 1 2 θ = π 4 , 3 π 4 θ = π 8 , 3 π 8 D'(\theta) = 0 \Rightarrow 2\cos2\theta - 2\sin2\theta = 0 \Rightarrow \tan2\theta = 1 \Rightarrow 2\theta = \frac{\pi}{4}, \frac{3\pi}{4} \Rightarrow \theta = \frac{\pi}{8}, \frac{3\pi}{8} (i).

D ( π 8 ) = 4 sin 2 ( π 8 ) 4 cos 2 ( π 8 ) = 4 ( s i n ( π 4 ) + c o s ( π 4 ) ) = 4 2 < 0 D''(\frac{\pi}{8}) = -4\sin2(\frac{\pi}{8}) - 4\cos2(\frac{\pi}{8}) = -4(sin(\frac{\pi}{4}) + cos(\frac{\pi}{4})) = -4\sqrt{2} < 0 (MAXIMUM) (ii)

D ( 3 π 8 ) = 4 sin 2 ( 3 π 8 ) 4 cos 2 ( 3 π 8 ) = 4 ( s i n ( 3 π 4 ) + c o s ( 3 π 4 ) ) = 4 2 > 0 D''(\frac{3\pi}{8}) = -4\sin2(\frac{3\pi}{8}) - 4\cos2(\frac{3\pi}{8}) = -4(sin(\frac{3\pi}{4}) + cos(\frac{3\pi}{4})) = 4\sqrt{2} > 0 (MINIMUM) (ii)

Finally, we obtain D ( π 8 ) = 2 + 2 D(\frac{\pi}{8}) = \boxed{2 + \sqrt{2}} and D ( 3 π 8 ) = 2 2 . D(\frac{3\pi}{8}) = \boxed{2-\sqrt{2}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...