Quad Capacitor Circuit

An AC power supply with a voltage ( V s V_s ) of 15 V 15\text{ V} and a frequency ( f f ) of 30 Hz 30\text{ Hz} was connected to a circuit of four capacitors ( C C ).

In this circuit, C I = 10 π F C_\text{I} = \dfrac{10}{\pi}\text{ F} , C II = 4 π F C_\text{II} = \dfrac{4}{\pi}\text{ F} , C III = 6 π F C_\text{III} = \dfrac{6}{\pi}F , and C IV = 20 π F C_\text{IV} = \dfrac{20}{\pi}\text{ F} .

Determine the current ( I I ) of this circuit in amps \text{amps} .

Note : X c = 1 2 π f C circuit X_c = \dfrac{1}{2 \pi \text{ f }C_\text{circuit}} and I = V s X c I = \dfrac{V_s}{X_c} .


David's Electricity Set


The answer is 3600.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Hontz
Jun 5, 2016

C I I , I I I = C I I + C I I I = 4 π + 6 π = 10 π F C c i r c u i t = ( 1 C I + 1 C I I , I I I + 1 C I V ) 1 = ( π 10 + π 10 + π 20 ) 1 = ( π 4 ) 1 = 4 π F C_{II,III} = C_{II}+C_{III} = \frac{4}{\pi}+\frac{6}{\pi} = \frac{10}{\pi}F \\ C_{circuit} = \Big( \frac{1}{C_{I}} + \frac{1}{C_{II,III}} + \frac{1}{C_{IV}} \Big)^{-1} = \Big( \frac{\pi}{10} + \frac{\pi}{10} + \frac{\pi}{20} \Big)^{-1} = \Big( \frac{\pi}{4} \Big) ^{-1} = \frac{4}{\pi}F X c = 1 2 π ( 30 H z ) ( 4 π F ) = 1 240 Ω X_c = \frac{1}{2 \pi (30Hz) (\frac{4}{\pi}F)} = \frac{1}{240}Ω I = V s X c = 15 V 1 240 Ω = 3600 A I = \frac{V_s}{X_c} = \frac{15V}{\frac{1}{240}Ω} = \boxed{3600 A}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...