Quad Function Sum

Algebra Level 3

Let f ( x ) = x 4 f(x) = \lfloor \sqrt[4]{x} \rfloor .

Find S S = i = 1 2016 1 f ( i ) \displaystyle \sum_{i=1} ^ {2016} \frac{1}{f(i)} .

S S can be represented as an irreducible fraction a b \frac{a}{b} .

Enter your answer as a + b a+b .


The answer is 9069.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arjen Vreugdenhil
Dec 20, 2017

Let's first calculate S N = i = 1 N 4 1 1 i 4 = k = 1 N 1 ( k + 1 ) 4 k 4 k = k = 1 N 1 ( 4 k 2 + 6 k + 4 + 1 k ) = 2 3 ( N 1 ) N ( 2 N 1 ) + 3 ( N 1 ) N + 4 ( N 1 ) + k = 1 N 1 1 k . S_N = \sum_{i = 1}^{N^4-1} \frac 1{\lfloor \sqrt[4]{i}\rfloor} = \sum_{k = 1}^{N-1} \frac{(k+1)^4 - k^4} k \\ = \sum_{k=1}^{N-1} \left(4k^2 + 6k + 4 + \frac 1 k\right) = \tfrac23 (N-1)N(2N-1) + 3(N-1)N + 4(N-1) + \sum_{k=1}^{N-1} \frac 1 k. Since 6 4 1 = 1295 < 2016 < 7 4 1 = 2400 6^4-1 = 1295 < 2016 < 7^4-1 = 2400 , we evaluate this for N = 6 N = 6 , and add 2016 1295 = 721 2016 - 1295 = 721 times the term 1 / 6 1/6 : S = S 6 + 721 × 1 6 = 2 3 ( 6 1 ) 6 ( 2 6 1 ) + 3 ( 6 1 ) 6 + 4 ( 6 1 ) + k = 1 5 1 k + 120 1 6 = 2 3 5 6 11 + 3 5 6 + 4 5 + ( 1 + 1 2 + 1 3 + 1 4 + 1 5 ) + 120 1 6 = 220 + 90 + 20 + 2 17 60 + 120 1 6 = 452 27 60 = 452 9 20 = 9049 20 . S = S_6 + 721\times\tfrac16 = \tfrac23 (6-1)6(2\cdot 6-1) + 3(6-1)6 + 4(6-1) + \sum_{k=1}^5 \frac 1 k + 120\tfrac 16 \\ = \tfrac23\cdot 5\cdot 6\cdot 11 + 3\cdot 5\cdot 6 + 4\cdot 5 + (1 + \tfrac12 + \tfrac13 + \tfrac 14 + \tfrac15) + 120\tfrac16 \\ = 220 + 90 + 20 + 2\tfrac{17}{60} + 120\tfrac 16 = 452\tfrac{27}{60} = 452\tfrac{9}{20} = \frac{9049}{20}. The answer is 9049 + 20 = 9069 9049 + 20 = \boxed{9069} .

It's a beautiful sum. Because between 1 and 2016 there are only six forth powers, I see no need to use a more general approach. Simple table will do the job. My solution follows:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...