Quadratic 4

Algebra Level 4

Let a , b a,b and c c be real numbers with a 0 a\ne 0 . If α \alpha is a root of the equation a 2 x 2 + b x + c = 0 a^2 x^2 + bx + c = 0 , and β \beta is a root of a 2 x 2 b x c = 0 a^2x^2-bx-c= 0 and 0 < α < β 0<\alpha <\beta , then the equation a 2 x 2 + 2 b x + 2 c = 0 a^2 x^2 + 2bx + 2c = 0 has a root γ \gamma that satisfies:

γ = α γ = α + β α < γ < β γ =2 α + β

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

James Wilson
Jan 12, 2021

Solving the quadratic equation that α \alpha is a root of, namely, a 2 x 2 + b x + c = 0 a^2x^2+bx+c=0 , I get:

x = b ± b 2 4 a 2 c 2 a 2 x = \frac{-b\pm\sqrt{b^2-4a^2c}}{2a^2}

First note: b 2 4 a 2 c 0. b^2-4a^2c\geq 0. (Note that the other discriminants should be nonnegative as well. I'm just not considering them at the moment.)

Assume b = 0. b=0.

4 a 2 c 0 c 0. \Rightarrow -4a^2c\geq 0\Rightarrow c\leq 0.

This implies α = 4 a 2 c 2 a 2 \alpha=\frac{\sqrt{-4a^2c}}{2a^2} because α > 0 \alpha>0 (i.e., we cannot have α = 4 a 2 c 2 a 2 \alpha=-\frac{\sqrt{-4a^2c}}{2a^2} ),

and β = 4 a 2 c 2 a 2 \beta=\frac{\sqrt{4a^2c}}{2a^2} (because β > 0 \beta>0 as well).

If c = 0 , c=0, then α = β = 0 , \alpha=\beta=0, which contradicts 0 < α < β . 0<\alpha<\beta.

If c < 0 , c<0, then β \beta is imaginary, which also contradicts 0 < α < β . 0<\alpha<\beta.

Therefore, b 0. b\neq 0.

Assume b > 0. b>0.

Case 1: α = b b 2 4 a 2 c 2 a 2 . \alpha=\frac{-b-\sqrt{b^2-4a^2c}}{2a^2}.

α > 0 \alpha >0 leads to:

b b 2 4 a 2 c > 0 -b-\sqrt{b^2-4a^2c}>0

b > b 2 4 a 2 c , \Leftrightarrow -b>\sqrt{b^2-4a^2c},

which is impossible. So, α b b 2 4 a 2 c 2 a 2 . \alpha \neq \frac{-b-\sqrt{b^2-4a^2c}}{2a^2}.

Case 2: α = b + b 2 4 a 2 c 2 a 2 . \alpha=\frac{-b+\sqrt{b^2-4a^2c}}{2a^2}.

α > 0 \alpha > 0

b > b 2 4 a 2 c \Leftrightarrow -b>-\sqrt{b^2-4a^2c}

b 2 < b 2 4 a 2 c \Leftrightarrow b^2 < b^2-4a^2c

c < 0. \Leftrightarrow c < 0.

I conclude that for b > 0 , b>0, we must have α = b + b 2 4 a 2 c 2 a 2 \alpha =\frac{-b+\sqrt{b^2-4a^2c}}{2a^2} and c < 0 c<0 .

Still assuming b > 0 , b>0, examine the two roots of the equation that β \beta is a root of (namely, a 2 x 2 b x c = 0 a^2x^2-bx-c=0 ):

x = b ± b 2 + 4 a 2 c 2 a 2 . x = \frac{b\pm\sqrt{b^2+4a^2c}}{2a^2}.

Assume β = b + b 2 + 4 a 2 c 2 a 2 . \beta = \frac{b+\sqrt{b^2+4a^2c}}{2a^2}.

α < β \alpha < \beta

b + b 2 4 a 2 c < b + b 2 + 4 a 2 c \Leftrightarrow -b +\sqrt{b^2-4a^2c} < b+\sqrt{b^2+4a^2c}

b 2 4 a 2 c < 2 b + b 2 + 4 a 2 c \Leftrightarrow \sqrt{b^2-4a^2c} < 2b + \sqrt{b^2+4a^2c}

b 2 4 a 2 c < 4 b 2 + b 2 + 4 a 2 c + 4 b b 2 + 4 a 2 c \Leftrightarrow b^2-4a^2c < 4b^2+b^2+4a^2c+4b\sqrt{b^2+4a^2c}

8 a 2 c 4 b 2 < 4 b b 2 + 4 a 2 c \Leftrightarrow -8a^2c -4b^2 < 4b\sqrt{b^2+4a^2c}

b 2 2 a 2 c < b b 2 + 4 a 2 c \Leftrightarrow -b^2-2a^2c < b\sqrt{b^2+4a^2c}

Invoking b 2 + 4 a 2 c 0 , b^2+4a^2c\geq 0, we find b 2 2 a 2 c 2 a 2 c < 0. -b^2-2a^2c\leq 2a^2c < 0.

That means the inequality α < β \alpha < \beta is true.

Now, assume β = b b 2 + 4 a 2 c 2 a 2 \beta=\frac{b-\sqrt{b^2+4a^2c}}{2a^2}

α < β \alpha < \beta

b + b 2 4 a 2 c < b b 2 + 4 a 2 c \Leftrightarrow -b+\sqrt{b^2-4a^2c}<b-\sqrt{b^2+4a^2c}

b 2 4 a 2 c < 2 b b 2 + 4 a 2 c \Leftrightarrow \sqrt{b^2-4a^2c}<2b-\sqrt{b^2+4a^2c}

b 2 4 a 2 c < 4 b 2 + b 2 + 4 a 2 c 4 b b 2 + 4 a 2 c \Leftrightarrow b^2-4a^2c < 4b^2+b^2+4a^2c-4b\sqrt{b^2+4a^2c}

b 2 2 a 2 c < b b 2 + 4 a 2 c \Leftrightarrow -b^2-2a^2c < -b\sqrt{b^2+4a^2c}

b 2 + 2 a 2 c > b b 2 + 4 a 2 c \Leftrightarrow b^2+2a^2c > b\sqrt{b^2+4a^2c}

b 2 + 4 a 2 b 2 c + 4 a 4 c 2 > b 4 + 4 a 2 b 2 c \Leftrightarrow b^2+4a^2b^2c+4a^4c^2 > b^4 + 4a^2b^2c

a 4 c 2 > 0 , \Leftrightarrow a^4c^2>0,

which is always true. Therefore, this combination of α \alpha and β \beta also works in the case b > 0. b>0.

It is time to compare γ \gamma to α \alpha and β \beta for the cases A) α = b + b 2 4 a 2 c 2 a 2 \alpha=\frac{-b+\sqrt{b^2-4a^2c}}{2a^2} and β = b + b 2 + 4 a 2 c 2 a 2 \beta=\frac{b+\sqrt{b^2+4a^2c}}{2a^2} and B) α = b + b 2 4 a 2 c 2 a 2 \alpha=\frac{-b+\sqrt{b^2-4a^2c}}{2a^2} and β = b b 2 + 4 a 2 c 2 a 2 \beta=\frac{b-\sqrt{b^2+4a^2c}}{2a^2} .

Case A: α = b + b 2 4 a 2 c 2 a 2 \alpha=\frac{-b+\sqrt{b^2-4a^2c}}{2a^2} and β = b + b 2 + 4 a 2 c 2 a 2 \beta=\frac{b+\sqrt{b^2+4a^2c}}{2a^2}

We must show that one of the roots of a 2 x 2 + 2 b x + 2 c = 0 a^2x^2+2bx+2c=0 is such that α < x = γ < β . \alpha<x=\gamma<\beta.

Take γ = 2 b + 4 b 2 8 a 2 c 2 a 2 . \gamma = \frac{-2b+\sqrt{4b^2-8a^2c}}{2a^2}.

Otherwise, γ = 2 b 4 b 2 8 a 2 c 2 a 2 < 0 \gamma =\frac{-2b-\sqrt{4b^2-8a^2c}}{2a^2}<0 (which contradicts γ > 0 \gamma>0 ).

α < γ \alpha<\gamma

b + b 2 4 a 2 c < 2 b + 4 b 2 8 a 2 c \Leftrightarrow -b + \sqrt{b^2-4a^2c} < -2b + \sqrt{4b^2-8a^2c}

b + b 2 4 a 2 c < 4 b 2 8 a 2 c \Leftrightarrow b+\sqrt{b^2-4a^2c} < \sqrt{4b^2-8a^2c}

b 2 + b 2 4 a 2 c + 2 b b 2 4 a 2 c < 4 b 2 8 a 2 c \Leftrightarrow b^2+b^2-4a^2c+2b\sqrt{b^2-4a^2c}<4b^2-8a^2c

b b 2 4 a 2 c < b 2 2 a 2 c \Leftrightarrow b\sqrt{b^2-4a^2c} < b^2-2a^2c

(since c < 0 , c<0, I can square both sides)

b 4 4 a 2 b 2 c < b 4 4 a 2 b 2 c + 4 a 4 c 2 \Leftrightarrow b^4-4a^2b^2c < b^4 -4a^2b^2c+4a^4c^2

0 < a 4 c 2 , \Leftrightarrow 0 < a^4c^2,

which is always true. Therefore, α < γ \alpha <\gamma when b > 0. b>0.

γ < β \gamma < \beta

2 b + 4 b 2 8 a 2 c < b + b 2 + 4 a 2 c \Leftrightarrow -2b+\sqrt{4b^2-8a^2c}<b+\sqrt{b^2+4a^2c}

4 b 2 8 a 2 c < 3 b + b 2 + 4 a 2 c \Leftrightarrow \sqrt{4b^2-8a^2c}<3b+\sqrt{b^2+4a^2c}

4 b 2 8 a 2 c < 9 b 2 + b 2 + 4 a 2 c + 6 b b 2 + 4 a 2 c \Leftrightarrow 4b^2-8a^2c<9b^2+b^2+4a^2c+6b\sqrt{b^2+4a^2c}

b 2 2 a 2 c < b b 2 + 4 a 2 c \Leftrightarrow -b^2-2a^2c < b\sqrt{b^2+4a^2c}

Since b 2 2 a 2 c 2 a 2 c < 0 -b^2-2a^2c\leq 2a^2c<0 (by b 2 + 4 a 2 c 0 b^2+4a^2c\geq 0 ), b 2 2 a 2 c < b b 2 + 4 a 2 c -b^2-2a^2c < b\sqrt{b^2+4a^2c} is true.

Therefore, γ < β \gamma <\beta .

Case B: α = b + b 2 4 a 2 c 2 a 2 \alpha=\frac{-b+\sqrt{b^2-4a^2c}}{2a^2} and β = b b 2 + 4 a 2 c 2 a 2 \beta=\frac{b-\sqrt{b^2+4a^2c}}{2a^2}

α < γ \alpha<\gamma has already been done above.

γ < β \gamma<\beta

2 b + 4 b 2 8 a 2 c < b b 2 + 4 a 2 c \Leftrightarrow -2b+\sqrt{4b^2-8a^2c}<b-\sqrt{b^2+4a^2c}

4 b 2 8 a 2 c < 3 b b 2 + 4 a 2 c \Leftrightarrow \sqrt{4b^2-8a^2c}<3b-\sqrt{b^2+4a^2c}

(Note that we cannot have 3 b b 2 + 4 a 2 c 0 3b - \sqrt{b^2+4a^2c} \leq 0 because c < 0 c<0 , so we can continue with equivalence)

4 b 2 8 a 2 c < 9 b 2 + b 2 + 4 a 2 c 6 b b 2 + 4 a 2 c \Leftrightarrow 4b^2-8a^2c < 9b^2+b^2+4a^2c-6b\sqrt{b^2+4a^2c}

b b 2 + 4 a 2 c < b 2 + 2 a 2 c \Leftrightarrow b\sqrt{b^2+4a^2c} <b^2+2a^2c

b 4 + 4 a 2 b 2 c < b 4 + 4 a 2 b 2 c + 4 a 4 c 2 \Leftrightarrow b^4+4a^2b^2c < b^4 + 4a^2b^2c+4a^4c^2

0 < a 4 c 2 , \Leftrightarrow 0<a^4c^2,

which is a true statement. Therefore, γ < β . \gamma<\beta.

Now, consider b < 0. b<0.

Case 1: α = b b 2 4 a 2 c 2 a 2 . \alpha = \frac{-b-\sqrt{b^2-4a^2c}}{2a^2}.

α > 0 \alpha > 0

b > b 2 4 a 2 c \Leftrightarrow -b > \sqrt{b^2-4a^2c}

b 2 > b 2 4 a 2 c \Leftrightarrow b^2 > b^2-4a^2c

c > 0. \Leftrightarrow c >0.

Subcase I: β = b b 2 + 4 a c 2 a 2 . \beta = \frac{b-\sqrt{b^2+4a^c}}{2a^2}.

α < β \alpha < \beta

b + b 2 4 a 2 c < b b 2 + 4 a 2 c \Leftrightarrow -b+\sqrt{b^2-4a^2c}<b-\sqrt{b^2+4a^2c}

b 2 4 a 2 c < 2 b b 2 + 4 a 2 c \Leftrightarrow \sqrt{b^2-4a^2c} < 2b-\sqrt{b^2+4a^2c}

b 2 4 a 2 c < 2 b b 2 + 4 a 2 c \sqrt{b^2-4a^2c} < 2b-\sqrt{b^2+4a^2c} is impossible, so we cannot have this combination of α \alpha and β . \beta.

Subcase II: β = b + b 2 + 4 a 2 c 2 a 2 . \beta = \frac{b+\sqrt{b^2+4a^2c}}{2a^2}.

α < β \alpha < \beta

b b 2 4 a c < b + b 2 + 4 a 2 c \Leftrightarrow -b-\sqrt{b^2-4a^c} < b+\sqrt{b^2+4a^2c}

b 2 4 a 2 c < 2 b + b 2 + 4 a 2 c \Leftrightarrow -\sqrt{b^2-4a^2c} < 2b+\sqrt{b^2+4a^2c}

Since 3 b 2 < 4 a 2 c -3b^2<4a^2c is true (by noting c > 0 c>0 ) and is equivalent to 2 b + b 2 + 4 a 2 c > 0 , 2b+\sqrt{b^2+4a^2c}>0, we can conclude α < β \alpha<\beta .

Take γ = b + 4 b 2 8 a 2 c 2 a 2 . \gamma = \frac{-b+\sqrt{4b^2-8a^2c}}{2a^2}.

α < γ \alpha<\gamma

b b 2 4 a 2 c < 2 b + 4 b 2 8 a 2 c \Leftrightarrow -b-\sqrt{b^2-4a^2c}<-2b+\sqrt{4b^2-8a^2c}

b 2 4 a 2 c < b + 4 b 2 8 a 2 c , \Leftrightarrow -\sqrt{b^2-4a^2c}<-b+\sqrt{4b^2-8a^2c},

which is a true statement (since b < 0 b<0 ). That is, α < γ \alpha<\gamma has been shown.

γ < β \gamma<\beta

2 b + 4 b 2 8 a 2 c < b + b 2 + 4 a 2 c \Leftrightarrow -2b+\sqrt{4b^2-8a^2c}<b+\sqrt{b^2+4a^2c}

4 b 2 8 a 2 c < 3 b + b 2 + 4 a 2 c \Leftrightarrow \sqrt{4b^2-8a^2c} < 3b+\sqrt{b^2+4a^2c}

4 b 2 8 a 2 c < 9 b 2 + b 2 + 4 a 2 c + 6 b b 2 + 4 a 2 c \Leftrightarrow 4b^2-8a^2c<9b^2+b^2+4a^2c+6b\sqrt{b^2+4a^2c}

6 b 2 12 a 2 c < 6 b b 2 + 4 a 2 c \Leftrightarrow -6b^2-12a^2c<6b\sqrt{b^2+4a^2c}

b 2 + 2 a 2 c > b b 2 + 4 a 2 c \Leftrightarrow b^2+2a^2c>-b\sqrt{b^2+4a^2c}

b 4 + 4 a 2 b 2 c + 4 a 4 c 2 > b 4 + 4 a 2 b 2 c \Leftrightarrow b^4+4a^2b^2c+4a^4c^2>b^4+4a^2b^2c

a 4 c 2 > 0 , \Leftrightarrow a^4c^2>0,

which is a true statement. Therefore, γ < β \gamma<\beta .

Case 2: α = b + b 2 4 a 2 c 2 a 2 . \alpha = \frac{-b+\sqrt{b^2-4a^2c}}{2a^2}.

α > 0 \alpha>0

b > b 2 4 a 2 c , \Leftrightarrow -b > - \sqrt{b^2-4a^2c},

which is true, since b < 0. b<0.

Subcase 1: β = b b 2 + 4 a c 2 a 2 . \beta = \frac{b-\sqrt{b^2+4a^c}}{2a^2}.

α < β \alpha < \beta

b + b 2 4 a c < b b 2 + 4 a 2 c \Leftrightarrow -b+\sqrt{b^2-4a^c}<b-\sqrt{b^2+4a^2c}

b 2 4 a 2 c < 2 b b 2 + 4 a 2 c , \Leftrightarrow \sqrt{b^2-4a^2c}<2b-\sqrt{b^2+4a^2c},

which is impossible. Therefore, this pair of α \alpha and β \beta do no satisfy α < β \alpha < \beta (for b < 0 b<0 ).

Subcase 2: β = b + b 2 + 4 a c 2 a 2 . \beta=\frac{b+\sqrt{b^2+4a^c}}{2a^2}.

α < β \alpha<\beta

b + b 2 4 a 2 c < b + b 2 + 4 a 2 c \Leftrightarrow -b+\sqrt{b^2-4a^2c}<b+\sqrt{b^2+4a^2c}

2 b + b 2 4 a 2 c < b 2 + 4 a 2 c \Leftrightarrow -2b+\sqrt{b^2-4a^2c}<\sqrt{b^2+4a^2c}

4 b 2 + b 2 4 a 2 c 4 b b 2 4 a c 2 < b 2 + 4 a 2 c \Leftrightarrow 4b^2+b^2-4a^2c-4b\sqrt{b^2-4ac^2}<b^2+4a^2c

4 b b 2 4 a 2 c < 4 b 2 + 8 a 2 c \Leftrightarrow -4b\sqrt{b^2-4a^2c}<-4b^2+8a^2c

The inequality, 4 b b 2 4 a 2 c < 4 b 2 + 8 a 2 c , -4b\sqrt{b^2-4a^2c}<-4b^2+8a^2c, is impossible because the discriminant of a 2 x 2 + 2 b x + 2 c a^2x^2+2bx+2c must be nonnegative.

Therefore, I have shown that in every case, where the given conditions are satisfied, α < γ < β . \alpha<\gamma<\beta.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...