Quadratic and Floor

Algebra Level 5

x 2 8 x + 10 = 0 \large x^2-8\lfloor x\rfloor +10=0

The above equation has how many real roots?

Notation : \lfloor \cdot \rfloor denotes the floor function .

4 5 2 6 More than 6 3 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shaun Leong
Jun 9, 2016

Let a = x a=\lfloor x \rfloor and b = { x } b=\{x\} . ( a + b ) 2 8 a + 10 = 0 (a+b)^2-8a+10=0 b 2 + 2 a b + a 2 8 a + 10 = 0 b^2+2ab+a^2-8a+10=0 b = 2 a ± 32 a 40 2 = a ± 8 a 10 b=\frac{-2a\pm\sqrt{32a-40}}{2}=-a\pm\sqrt{8a-10}

Since b b is real thus 8 a 10 0 8a-10\geq0 and a a is positive.

We define b b to be positive, so we reject the negative root since otherwise b b would be negative.

0 b < 1 0 \leq b<1 0 a + 8 a 10 < 1 0\leq-a+\sqrt{8a-10}<1 0 a + 8 a 10 and a + 8 a 10 < 1 0\leq-a+\sqrt{8a-10} \mbox{ and} -a+\sqrt{8a-10}<1 a 2 8 a + 10 0 and a 2 6 a + 11 > 0 a^2-8a+10\leq0 \mbox{ and } a^2-6a+11>0 ( a 8 24 2 ) ( a 8 + 24 2 ) 0 and ( a 3 ) 2 + 2 > 0 (a-\frac{8-\sqrt{24}}{2})(a-\frac{8+\sqrt{24}}{2})\leq0 \mbox{ and } (a-3)^2+2>0

The first inequality yields 4 6 a 4 + 6 4-\sqrt{6}\leq a \leq 4+\sqrt{6} and the second always holds true. Thus we have a = 2 , 3 , 4 , 5 , 6 a=2,3,4,5,6 and there are 5 \boxed{5} solutions for x x .

(Namely x = 6 , 14 , 22 , 30 or 38 x=\sqrt{6},\sqrt{14},\sqrt{22},\sqrt{30} \mbox{ or } \sqrt{38} )

The Question becomes Extremely Simple if you consider the intersection of the graphs of y = x 2 + 10 y=x^2+10 and y = 8 x y=8\lfloor x\rfloor

Sabhrant Sachan - 5 years ago
Ankit Kumar Jain
Mar 13, 2017

Call S = x 2 8 x + 10 S = x^2 - 8\lfloor {x}\rfloor + 10

If x 0 \lfloor {x}\rfloor \leq 0 \Rightarrow S > 0 \color{#3D99F6}\text{S > 0} .

Therefore x > 0 \lfloor {x}\rfloor > 0

Now , if x 8 \lfloor {x}\rfloor \geq 8

x x 8 \Rightarrow x \geq \lfloor {x}\rfloor \geq 8

x 2 x 2 8 x \Rightarrow x^2 \geq \lfloor {x}\rfloor^{2} \geq 8\lfloor {x}\rfloor \Rightarrow S > 0 \color{#3D99F6}\text{S > 0}

Therefore , 1 x 7 \boxed{1 \leq \lfloor {x}\rfloor \leq 7} .

Checking the cases yields x = 6 , 14 , 22 , 30 , 38 \boxed{x = \sqrt{6} , \sqrt{14} , \sqrt{22} , \sqrt{30} , \sqrt{38}}

@Sambhrant Sachan @Shaun Leong Please comment!!

Ankit Kumar Jain - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...