Quadratic equation

Algebra Level 4

If a a and b b are the roots of the equation x 2 + 10 x 7 = 0 x^{2} + 10x - 7 = 0 , find the value of

a 12 + b 12 7 ( a 10 + b 10 ) 2 ( a 11 + b 11 ) . \large \dfrac{ a^{12} + b^{12} - 7( a^{10} + b^{10})}{ 2( a^{11} + b^{11})}.


The answer is -5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

U Z
Oct 16, 2014

since a and b are roots therefore

a 2 + 10 a 7 = 0 a^{2} + 10 a -7 = 0

b 2 + 10 b 7 = 0 b^{2} + 10 b -7 = 0

= a 12 + 10 a 11 7 a 10 = 0 =a^{12} + 10 a^{11} -7a^{10} = 0

and

= b 12 + 10 b 11 7 b 10 = 0 = b^{12} + 10 b^{11} -7b^{10} = 0

adding both

a 12 + b 12 + 10 ( a 11 + b 11 ) 7 ( a 10 + b 10 ) = 0 a^{12} + b^{12} + 10( a^{11} + b^{11}) - 7( a^{10} + b^{10}) = 0

= a 12 + b 12 7 ( a 10 + b 10 ) = 2 X 5 ( a 11 + b 11 ) = a^{12} + b^{12} - 7( a^{10} + b^{10}) = -2X5( a^{11} + b^{11})

a 12 + b 12 ) 7 ( a 10 + b 10 ) 2 ( a 11 + b 11 ) = 5 \frac{a^{12} + b^{12}) - 7( a^{10} + b^{10})}{2( a^{11} + b^{11})} = -5

think its the easiest...solution!

angeli joyce tolomia - 6 years, 6 months ago

precisely .. this is the best way

Aritra Jana - 6 years, 7 months ago
Hussein Younes
Feb 14, 2015

we can see that a+b=-10 and a b=-7 then (a^12+b^12+a b(a^10+b^10))/2(a^11+b^11) =( a^12+b^12+a^11 b+b^11 a)/2(a^11+b^11) =(a^11 a+b^11 b+a^11 b+b^11 a)/2(a^11+b^11) =(a^11(a+b)+b^11(a+b))/2(a^11+b^11) =((a+b)(a^11+b^11))/2(a^11+b^11) =(a+b)/2 =-5

Incredible Mind
Jan 11, 2015

c'mon u can do this in ur head. just substitute 7=ab in the given equation and factor.a^11+b^11 factors out leaving (a+b /2)=-5

yeah you are right, shouldn't be level 4 problem

Mardokay Mosazghi - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...