Quadratic equation, only one real root.

Algebra Level 4

2 a 2 + x 2 a 3 x 3 2 x a x + a 2 + x 2 + 1 x a = 0 \dfrac{2a^2+x^2}{a^3-x^3}-\dfrac{2x}{ax+a^2+x^2}+\dfrac{1}{x-a}=0

Find the real values of a a for which there exists a unique real solution to the above equation.

( 1 , ) (-1,\infty) ( , 1 ) (-\infty,1) {0} R { 0 } \mathbb{R} -\{0\} ( 1 , 1 ) (-1,1)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

U Z
Feb 9, 2015

2 a 2 + x 2 a 3 x 3 2 x ( a x ) ( a x ) ( a 2 + a x + x 2 ) + ( a 2 + a x + x 2 ) ( x a ) ( a 2 + a x + x 2 ) = 0 \dfrac{2a^2 + x^2}{a^3 - x^3} - \dfrac{2x(a - x)}{(a - x)(a^2 + ax + x^2)} + \dfrac{(a^2 + ax + x^2)}{(x - a)(a^2 + ax + x^2)} = 0

2 a 2 + x 2 a 3 x 3 2 x ( a x ) a 3 x 3 + ( a 2 + a x + x 2 ) x 3 a 3 = 0 \dfrac{2a^2 + x^2}{a^3 - x^3} - \dfrac{2x(a - x)}{a^3 - x^3} + \dfrac{(a^2 + ax + x^2)}{x^3 - a^3} = 0

2 a 2 + x 2 2 a x + 2 x 2 ( a 2 + a x + x 2 ) a 3 x 3 = 0 \dfrac{ 2a^2 + x^2 - 2ax + 2x^2 - ( a^2 + ax + x^2)}{a^3 - x^3} = 0

a 2 2 a x + x 2 + ( x 2 a x ) a 3 x 3 = 0 \dfrac{ a^2 - 2ax + x^2 + (x^2 - ax)}{a^3 - x^3} = 0

( a x ) 2 x ( a x ) a 3 x 3 = 0 \dfrac{ (a - x)^2 - x(a - x)}{a^3 - x^3} =0

a 3 x 3 0 \implies a^3 - x^3 \neq 0

( a x ) 2 x ( a x ) = 0 \implies (a - x)^2 - x(a - x) = 0

( a x ) ( a 2 x ) = 0 (a - x)( a - 2x) = 0

a = 2 x ( a = 2 x 0 ) \implies a = 2x (a=2x \neq 0)

T h u s D o m a i n o f a = R { 0 } Thus~ Domain ~of~a~=~ \mathbb R - \{0\}

brilliant solution

Ayush Verma - 6 years, 4 months ago

Nice. Specially the last four lines.

Niranjan Khanderia - 6 years, 3 months ago

Good solution...

B.s. Ashwin - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...