Quadratic Equation with Matrices

Algebra Level 3

Consider a square matrix M M of size 2 × 2 2 \times 2 . The unknown matrix M M satisfies the equation:

M 2 + 5 M + I = [ 0 0 0 0 ] M^2 + 5M + I = \left[\begin{matrix}0&0\\0&0\end{matrix}\right]

It is given that M M is a diagonal matrix with real entries. Find the number of such matrices satisfying the given conditions.

Note: I I is the identity matrix of size 2 × 2 2 \times 2 .

Bonus: Attempt to find a solution to the given equation that has all non-zero entries.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

All four combinations of signs for ± \pm : ( 1 2 ( 21 ± 5 ) 0 0 1 2 ( 21 ± 5 ) ) \left( \begin{array}{cc} \frac{1}{2} \left(-\sqrt{21}\pm 5\right) & 0 \\ 0 & \frac{1}{2} \left(-\sqrt{21}\pm 5\right) \\ \end{array} \right)

The solution of: x 2 + 5 x + 1 = 0 x^2+5 x+1=0 is 1 2 ( 21 ± 5 ) \frac{1}{2}(-\sqrt{21}\pm 5) .

With m = ( a b c d ) m=\left( \begin{array}{cc} a & b \\ c & d \\ \end{array} \right) , solutions of m . m + 5 m + ( 1 0 0 1 ) = ( 0 0 0 0 ) m.m+5 m+\left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \\ \end{array} \right)=\left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \\ \end{array} \right) are:

( a b a 2 5 a 1 b a 5 ) \left( \begin{array}{cc} a & b \\ \frac{-a^2-5 a-1}{b} & -a-5 \\ \end{array} \right)

( 1 2 ( 21 5 ) 0 c 1 2 ( 21 ± 5 ) ) \left( \begin{array}{cc} \frac{1}{2} \left(-\sqrt{21}\mp 5\right) & 0 \\ c & \frac{1}{2} \left(\sqrt{21}\pm 5\right) \\ \end{array} \right)

and the previous four solutions. The solution immediately above is two solutions: chose either the top or bottom sign.

David Vreken
Aug 19, 2019

Let M = [ a 0 0 d ] M = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} . Then M 2 = [ a 0 0 d ] [ a 0 0 d ] = [ a 2 0 0 d 2 ] M^2 = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} = \begin{bmatrix} a^2 & 0 \\ 0 & d^2 \end{bmatrix} , and

M 2 + 5 M + I = [ 0 0 0 0 ] M^2 + 5M + I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

becomes

[ a 2 0 0 d 2 ] + 5 [ a 0 0 d ] + [ 1 0 0 1 ] = [ 0 0 0 0 ] \begin{bmatrix} a^2 & 0 \\ 0 & d^2 \end{bmatrix} + 5\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

which leads to equations a 2 + 5 a + 1 = 0 a^2 + 5a + 1 = 0 and d 2 + 5 d + 1 = 0 d^2 + 5d + 1 = 0 , which solve to a = 5 ± 21 2 a = \frac{-5 \pm \sqrt{21}}{2} and d = 5 ± 21 2 d = \frac{-5 \pm \sqrt{21}}{2} .

Since there are 2 2 options for both a a and d d , there are 2 × 2 = 4 2 \times 2 = \boxed{4} possible matrices that satisfy the given conditions:

[ 5 + 21 2 0 0 5 + 21 2 ] \begin{bmatrix} \frac{-5 + \sqrt{21}}{2} & 0 \\ 0 & \frac{-5 + \sqrt{21}}{2} \end{bmatrix} , [ 5 + 21 2 0 0 5 21 2 ] \begin{bmatrix} \frac{-5 + \sqrt{21}}{2} & 0 \\ 0 & \frac{-5 - \sqrt{21}}{2} \end{bmatrix} , [ 5 21 2 0 0 5 + 21 2 ] \begin{bmatrix} \frac{-5 - \sqrt{21}}{2} & 0 \\ 0 & \frac{-5 + \sqrt{21}}{2} \end{bmatrix} , and [ 5 21 2 0 0 5 21 2 ] \begin{bmatrix} \frac{-5 - \sqrt{21}}{2} & 0 \\ 0 & \frac{-5 - \sqrt{21}}{2} \end{bmatrix} .


For the bonus, let M = [ a b c d ] M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} . Then M 2 = [ a b c d ] [ a b c d ] = [ a 2 + b c b ( a + d ) c ( a + d ) b c + d 2 ] M^2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + bc & b(a + d) \\ c(a + d) & bc + d^2 \end{bmatrix} , and

M 2 + 5 M + I = [ 0 0 0 0 ] M^2 + 5M + I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

becomes

[ a 2 + b c b ( a + d ) c ( a + d ) b c + d 2 ] + 5 [ a b c d ] + [ 1 0 0 1 ] = [ 0 0 0 0 ] \begin{bmatrix} a^2 + bc & b(a + d) \\ c(a + d) & bc + d^2 \end{bmatrix} + 5\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

which leads to equations a 2 + b c + 5 a + 1 = 0 a^2 + bc + 5a + 1 = 0 , b ( a + d ) + 5 b = 0 b(a + d) + 5b = 0 , c ( a + d ) + 5 c = 0 c(a + d) + 5c = 0 , and b c + d 2 + 5 d + 1 = 0 bc + d^2 + 5d + 1 = 0 , which lead to multiple solutions for all non-zero entries as long as d = a 5 d = -a - 5 and b c = d 2 5 d 1 bc = -d^2 - 5d - 1 , one solution being M = [ 5 2 21 2 21 2 5 2 ] M = \begin{bmatrix} -\frac{5}{2} & \frac{\sqrt{21}}{2} \\ \frac{\sqrt{21}}{2} & -\frac{5}{2} \end{bmatrix} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...