Quadratic formulas

Algebra Level 3

The quadratic formula for the quadratic equation that a x 2 + b x + c = 0 ax^{2} + bx + c = 0 is b ± b 2 4 a c 2 a \displaystyle \frac { -b \pm \sqrt { b^{2} - 4ac } } { 2a } .

But it is only the formula when the b b is odd.

Then what is the formula when the b b is even?

So a x 2 + 2 b x + c = 0 ax^{2} + 2bx + c = 0 .

b ± b 2 ± a c a \frac { -b \pm \sqrt {b^{2} \pm ac } } { a } b ± b 2 4 a c a \frac { -b \pm \sqrt { b^{2} - 4ac } } { a } b ± b 2 ± 4 a c a \frac { -b \pm \sqrt { b^{2} \pm 4ac } } { a } b ± b 2 + a c a \frac { -b \pm \sqrt { b^{2} + ac } } { a } b ± b 2 a c a \frac { -b \pm \sqrt { b^{2} - ac } } { a } b ± b 2 + 4 a c a \frac { -b \pm \sqrt { b^{2} + 4ac } } { a }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

. .
Feb 15, 2021

The quadratic formula for the quadratic equation that a x 2 + b x + c = 0 ax^{2} + bx + c = 0 when b b is odd is b ± b 2 4 a c 2 a \displaystyle \frac { -b \pm \sqrt { b^{2} - 4ac } } { 2a } .

Because a x 2 + b x + c = 0 x 2 + b a x + c a = 0 x 2 + b a x = c a x 2 + b a + ( b 2 a ) 2 = c a + b 2 4 a 2 ( x + b 2 a ) 2 = 4 a c 4 a 2 + b 2 4 a 2 x + b 2 a = ± b 2 4 a c 2 a x = b ± b 2 4 a c 2 a \displaystyle ax^{2} + bx + c = 0 \rightarrow x^{2} + \frac{b}{a}x + \frac{c}{a} = 0 \rightarrow x^{2} + \frac{b}{a}x = - \frac{c}{a} \rightarrow x^{2} + \frac{b}{a} + \left(\frac{b}{2a}\right)^{2} = - \frac{c}{a} + \frac{b^{2}}{4a^{2}} \rightarrow \left(x+\frac{b}{2a}\right)^2 = -\frac{4ac}{4a^2} + \frac{b^{2}}{4a^{2}} \rightarrow x+\frac{b}{2a} = \pm \frac{ \sqrt{ b^{2} - 4ac } } { 2a } \rightarrow x = \frac { -b \pm \sqrt { b^{2} - 4ac } } { 2a } .

And if the quadratic equation that a x 2 + 2 b x + c = 0 ax^{2} + 2bx + c = 0 , the formula is b ± b 2 a c a \displaystyle \frac { -b \pm \sqrt { b^{2} - ac } } { a } .

Because a x 2 + 2 b x + c = 0 x 2 + 2 b a x + c a = 0 x 2 + 2 b a x = c a x 2 + 2 b a + ( b a ) 2 = c a + b 2 a 2 ( x + b a ) 2 = a c + b 2 a 2 x + b a = ± b 2 a c a x = b ± b 2 a c a \displaystyle ax^{2} + 2bx + c = 0 \rightarrow x^{2} + \frac{2b}{a}x + \frac{c}{a} = 0 \rightarrow x^{2} + \frac{2b}{a}x = - \frac{c}{a} \rightarrow x^{2} + \frac{2b}{a} + \left(\frac{b}{a}\right)^{2} = - \frac{c}{a} + \frac{b^{2}}{a^{2}} \rightarrow \left(x+\frac{b}{a}\right)^{2} = \frac{ -ac + b^{2} } { a^{2} } \rightarrow x+\frac{b}{a} = \pm \frac { \sqrt{b^{2} - ac } } { a } \rightarrow x = \frac { -b \pm \sqrt { b^{2} - ac } } { a } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...