Quadratic Graph! The Hunt For The Equation.

Algebra Level 1

Find the equation of the graph in the image.

y = ( x 1 ) ( x 5 ) y=(x-1)(x-5) y = 5 ( x 6 ) 4 y=\frac{ 5(x-6) } { 4 } y = 3 ( x 2 ) 2 y=\frac{ 3 (x-2) } {2} y = 4 ( x 1 ) ( x 5 ) 5 y=\frac{ 4(x-1)(x-5)} { 5} y = 3 ( 2 x + 3 ) 7 y= \frac{ 3(2x+3)} { 7 } y = 5 ( x 2 ) 4 y=\frac{5 (x-2) } {4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Roman Frago
Feb 21, 2015

y = k ( x a ) ( x b ) y=k(x-a)(x-b) for roots a a and b b

y = k ( x 1 ) ( x 5 ) y=k(x-1)(x-5)

When x = 0 x=0 ,

4 = k ( 0 1 ) ( 0 5 ) ; k = 4 5 4=k(0-1)(0-5); k=\frac {4} {5}

Thus, y = 4 5 ( x 1 ) ( x 5 ) y=\frac {4} {5}(x-1)(x-5)

or

y = a x 2 + b x + c y=ax^2+bx+c

When x = 0 x=0 , 4 = a ( 0 ) 2 + b ( 0 ) + c 4=a(0)^2+b(0)+c , thus c = 4 c=4

When x = 1 x=1 , 0 = a ( 1 ) 2 + b ( 1 ) + 4 0=a(1)^2+b(1)+4 ; a + b + 4 = 0 a+b+4=0

When x = 5 x=5 , 0 = a ( 5 ) 2 + b ( 5 ) + 4 0=a(5)^2+b(5)+4 ; 25 a + 5 b + 4 = 0 25a+5b+4=0

Solving for a a and b b , we get a = 4 5 a=\frac {4} {5} and b = 24 5 b=-\frac {24} {5}

So we come up with the equation y = 4 5 x 2 24 5 x + 4 y=\frac {4} {5}x^2-\frac {24} {5}x+4

or y = 4 5 ( x 2 6 x + 5 ) = 4 5 ( x 1 ) ( x 5 ) y=\frac {4} {5}(x^2-6x+5)=\frac {4} {5}(x-1)(x-5)

Notice that the graph includes the point (0, 4). Input x=0 to each of the choices. There is only one of them which returns a value of 4, so we are done!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...