Quadratic Sum mini algebra

Algebra Level 3

If x 2 x + 1 = 0 x^{2}-x+1=0 , then find the value of ( x 1 x ) 2 + a = 1 2015 ( x a + 1 x a ) 2 \left ( x-\frac{1}{x} \right )^{2}+\sum_{a=1}^{2015} \left ( x^a+\frac{1}{x^a} \right )^{2}


The answer is 4025.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Jason Hughes
Feb 2, 2015

If x 2 x + 1 = 0 x^{2}-x+1=0 . Then by quadratic formula x = 1 2 + i 3 2 x= \frac{1}{2} + i\frac{\sqrt3}{2} or x = 1 2 i 3 2 x= \frac{1}{2} - i\frac{\sqrt3}{2} .

( x 1 x ) 2 + ( x + 1 x ) 2 + ( x 2 + 1 x 2 ) 2 + ( x 3 + 1 x 3 ) 2 + . . . + ( x 2015 + 1 x 2015 ) 2 (x-\frac{1}{x})^{2}+( x+\frac{1}{x} )^{2}+( x^{2}+\frac{1}{x^{2}} )^{2}+ ( x^{3}+\frac{1}{x^{3}} )^{2}+...+( x^{2015}+\frac{1}{x^{2015}} )^{2}

= = ( x 1 x ) 2 ( x-\frac{1}{x})^{2} + n = 1 2015 ( x n + 1 x n ) 2 \sum_{n=1}^{2015}{ ( x^{n}+\frac{1}{x^{n}})^{2}} .

Let x = cos 6 0 + i sin 6 0 x=\cos 60^\circ +i\sin60^\circ .

( cos 6 0 + i sin 6 0 1 cos 6 0 + i sin 6 0 ) 2 ( \cos 60^\circ +i\sin60^\circ-\frac{1}{\cos 60^\circ +i\sin60^\circ})^{2} + n = 1 2015 ( ( cos 6 0 + i sin 6 0 ) n + 1 ( cos 6 0 + i sin 6 0 ) n ) 2 \sum_{n=1}^{2015}{((\cos 60^\circ +i\sin60^\circ)^{n}+\frac{1}{(\cos60^\circ +i\sin60^\circ)^{n}})^{2}} = =

( cos 6 0 + i sin 6 0 ( cos 6 0 i sin 6 0 ) ) 2 ( \cos 60^\circ +i\sin60^\circ-(\cos 60^\circ -i\sin60^\circ))^{2} + n = 1 2015 ( cos ( 60 n ) + i sin ( 60 n ) + 1 cos ( 60 n ) + i sin ( 60 n ) ) 2 \sum_{n=1}^{2015}{(\cos (60n)^\circ +i\sin (60n)^\circ+\frac{1}{\cos (60n)^\circ +i\sin (60n)^\circ})^{2}} = =

( 2 i sin 6 0 ) 2 + n = 1 2015 ( cos ( 60 n ) + i sin ( 60 n ) + cos ( 60 n ) i sin ( 60 n ) ) 2 = (2i\sin60^\circ)^{2} + \sum_{n=1}^{2015}{(\cos (60n)^\circ +i\sin (60n)^\circ+ \cos (60n)^\circ -i\sin (60n)^\circ)^{2}} =

4 sin 2 6 0 -4\sin^2 60^\circ + n = 1 2015 ( 2 cos ( 60 n ) ) 2 = \sum_{n=1}^{2015}{(2\cos (60n)^\circ )^{2} }=

4 ( 3 2 ) 2 + n = 1 2015 4 cos 2 ( 60 n ) = -4(\frac{\sqrt3}{2})^{2} + \sum_{n=1}^{2015}{4\cos^2 (60n)^\circ}=

3 -3 + 4 n = 1 2015 cos 2 ( 60 n ) = 4\sum_{n=1}^{2015}{\cos^2 (60n)^\circ}= .

Cosine is a cyclic function so the values of cos ( 60 n ) {\cos (60n)^\circ} repeat every six times because 360 60 = 6 \frac{360}{60}=6 . 2015 mod 6 is 5 so the sum of the first six terms of the original summation repeats 335 times with 5 left over or 336 times minus the last value. The equation then becomes.

3 -3 cos 2 ( 360 ) -\cos^2 (360)^\circ + 4 n = 1 336 cos 2 ( 60 ) + cos 2 ( 120 ) + cos 2 ( 180 ) + cos 2 ( 240 ) + cos 2 ( 300 ) + cos 2 ( 360 ) 4\sum_{n=1}^{336}{\cos^2 (60)^\circ+\cos^2 (120)^\circ+\cos^2 (180)^\circ+\cos^2 (240)^\circ+\cos^2 (300)^\circ+\cos^2 (360)^\circ } =

3 -3 - 1 2 1^{2} + 4 n = 1 336 ( 1 2 ) 2 + ( 1 2 ) 2 + ( 1 ) 2 + ( 1 2 ) 2 + ( 1 2 ) 2 + ( 1 ) 2 = 4\sum_{n=1}^{336}{(\frac{1}{2})^{2}+(\frac{-1}{2})^{2}+ (-1)^{2}+(\frac{-1}{2})^{2}+(\frac{1}{2})^{2}+ (1)^{2} } =

7 -7 + 4 n = 1 336 3 = 7 + 12 n = 1 336 1 = 7 + 12 336 = 4025 . 4\sum_{n=1}^{336}{3}= -7+12\sum_{n=1}^{336}{1}=-7+12*336 =\boxed{4025}.

note that for x 1 x \ne -1

we have x 3 x 2 + x = 0 x^{3}-x^{2}+x = 0 and x 2 x + 1 = 0 x^{2}-x+1 = 0

sum that both

x 3 + 1 = 0 x^{3} +1 = 0 or x 3 = 1 x^{3} = -1 for x 1 x \ne -1

then note that x 0 x \ne 0 divide that LHS and RHS by x x

we have x + 1 x = 1 x+\frac{1}{x} = 1

squared that LHS and RHS also we have x 2 + 1 x 2 = 1 x^{2} +\frac{1}{x^{2}} = -1

\,\,\, \,\,\,\,\, \,\,\,\,\, \bullet case 1 1

( x 1 x ) 2 = x 2 + 1 x 2 2 = 1 2 = 3 \left ( x - \frac{1}{x} \right )^{2} = x^{2} + \frac{1}{x^{2}} -2 = -1 -2 = -3

\,\,\, \,\,\,\,\, \,\,\,\,\, \bullet case 2 2

( x 3 k + 1 x 3 k ) 2 = ( ( x 3 ) k + 1 ( x 3 ) k ) 2 = ( 1 + 1 ) 2 = 4 \left ( x^{3k} +\frac{1}{x^{3k}} \right )^{2} = \left ( (x^{3})^{k} +\frac{1}{(x^{3})^{k}} \right )^{2} = \left ( 1+1 \right )^{2} = 4 for some k N k \in \mathbb{N}

( x 3 k + 1 + 1 x 3 k + 1 ) 2 = ( x ( x 3 ) k + 1 x ( x 3 ) k ) 2 \left ( x^{3k+1} +\frac{1}{x^{3k+1}} \right )^{2} = \left ( x(x^{3})^{k} +\frac{1}{x(x^{3})^{k}} \right )^{2} = ( x + 1 x ) 2 = x 2 + 1 x 2 + 2 = 1 + 2 = 1 = \left ( x +\frac{1}{x} \right )^{2} = x^{2}+\frac{1}{x^{2}}+2 = -1+2 = 1 for some k N { 0 } k \in \mathbb{N}\cup \left \{ 0 \right \}

( x 3 k + 2 + 1 x 3 k + 2 ) 2 = ( x 2 ( x 3 ) k + 1 x 2 ( x 3 ) k ) 2 = ( x 2 + 1 x 2 ) 2 = ( 1 ) 2 = 1 \left ( x^{3k+2} +\frac{1}{x^{3k+2}} \right )^{2} = \left ( x^{2}(x^{3})^{k} +\frac{1}{x^{2}(x^{3})^{k}} \right )^{2} = \left ( x^{2} +\frac{1}{x^{2}} \right )^{2} = (-1)^{2} = 1 for some k N { 0 } k \in \mathbb{N}\cup \left \{ 0 \right \} then ( x 1 x ) 2 + ( x + 1 x ) 2 + ( x 2 + 1 x 2 ) 2 + ( x 3 + 1 x 3 ) 2 + . . . + ( x 2015 + 1 x 2015 ) 2 \left ( x-\frac{1}{x} \right )^{2}+\left ( x+\frac{1}{x} \right )^{2}+\left ( x^{2}+\frac{1}{x^{2}} \right )^{2}+\left ( x^{3}+\frac{1}{x^{3}} \right )^{2}+...+\left ( x^{2015}+\frac{1}{x^{2015}} \right )^{2}

= 3 + 4 2015 3 + 1 ( 2015 2015 3 ) = 4025 = -3 + 4\left \lfloor \frac{2015}{3} \right \rfloor + 1\left ( 2015 - \left \lfloor \frac{2015}{3} \right \rfloor \right ) = \boxed{4025}

t h e r o o t s a r e ω a n d ω 2 s u b s t i t u t e i n t h e f i r s t t e r m y o u g e t 3 a n d o t h e r t e r m s o f p o w e r s d i v i s i b l e b 3 w i l l g i v e ( 1 1 ) 2 = 4 s o n u m b e r o f t e r m s o f p o w e r s d i v i s i b l e b y 3 i s 2013 3 = 671 a n d t h e o t h e r t e r m s g i v e 1 2 s o t h e f i n a l r e s u l t = 3 + 671 ( 4 ) + ( 2015 671 ) ( 1 ) = 4025 \begin{array}{l} {{the}\hspace{0.33em}{roots}\hspace{0.33em}{are}\hspace{0.33em}\mathrm{{-}}\mathit{\omega}\hspace{0.33em}{and}\hspace{0.33em}\mathrm{{-}}{\mathit{\omega}}^{2}}\\ {\hspace{0.33em}{substitute}\hspace{0.33em}{in}\hspace{0.33em}{the}\hspace{0.33em}{first}\hspace{0.33em}{term}\hspace{0.33em}}\\ {\hspace{0.33em}{you}\hspace{0.33em}{get}\hspace{0.33em}\mathrm{{-}}{3}\hspace{0.33em}}\\ {{and}\hspace{0.33em}{other}\hspace{0.33em}{terms}\hspace{0.33em}{of}\hspace{0.33em}{powers}\hspace{0.33em}{divisible}\hspace{0.33em}{b}\hspace{0.33em}{3}\hspace{0.33em}}\\ {{will}\hspace{0.33em}{give}\hspace{0.33em}{\mathrm{(}}\mathrm{{-}}{1}\mathrm{{-}}{1\mathrm{)}}^{2}\mathrm{{=}}{4}}\\ {{so}\hspace{0.33em}{number}\hspace{0.33em}{of}\hspace{0.33em}{terms}\hspace{0.33em}{of}\hspace{0.33em}{powers}\hspace{0.33em}{divisible}\hspace{0.33em}{by}\hspace{0.33em}{3}\hspace{0.33em}}\\ {{is}\hspace{0.33em}\frac{\mathrm{2013}}{3}\mathrm{{=}}{\mathrm{671}}\hspace{0.33em}{and}\hspace{0.33em}{the}\hspace{0.33em}{other}\hspace{0.33em}{terms}\hspace{0.33em}{give}\hspace{0.33em}{1}^{2}}\\ {{so}\hspace{0.33em}{the}\hspace{0.33em}{final}\hspace{0.33em}{result}\hspace{0.33em}\mathrm{{=}}\mathrm{{-}}{3}\mathrm{{+}}{\mathrm{671}}\left({4}\right)\mathrm{{+}}\left({{\mathrm{2015}}\mathrm{{-}}{\mathrm{671}}}\right){\mathrm{(}}{1}{\mathrm{)}}\mathrm{{=}}{\mathrm{4025}}} \end{array}

Muhammad Ahmad - 6 years, 3 months ago
Aakash Khandelwal
Feb 25, 2015

since x is -w or -w^2 putting x as -w and expanding all brackets and forming GP we get the required sum as 4030-2-3=4025

note: w is cube root of unity

Alex Hack
Aug 19, 2019

Consider f ( x ) = x 3 + 1 f(x)=x^3+1 .

Then we have that x 3 + 1 x + 1 = x 2 x + 1 \frac{x^3+1}{x+1}=x^2-x+1 and so the roots of x 2 x + 1 x^2-x+1 are the complex roots of x 3 + 1 x^3+1 which are ω 1 = e i π 3 \omega_{1}=e^{i\frac{\pi}{3}} and ω 2 = e i π 3 = 1 ω 1 \omega_{2}=e^{-i\frac{\pi}{3}}=\frac{1}{\omega_{1}} .

We have to evaluate the expression ( x 1 x ) 2 + a = 1 2015 ( x a + 1 x a ) 2 (x-\frac{1}{x})^2+\sum_{a=1}^{2015} (x^{a}+\frac{1}{x^a})^2 for x = ω 1 x=\omega_{1} or x = ω 2 x=\omega_{2} ,

but it is clear this expression does not change if we exchange ω 1 \omega_{1} and ω 2 \omega_{2} and so we could evaluate the expression just for x = ω 1 x=\omega_{1} .

The first term is equal to ( 2 e i p i 3 ) 2 = ( 2 sin ( p i 3 ) ) 2 = ( i ( 3 ) ) 2 = 3 (2*\Im{e^{i\frac{pi}{3}}})^2=(2\sin(\frac{pi}{3}))^2=(i\sqrt(3))^2=-3 .

For the second term, note that we could rewrite it as

a = 1 2015 ω 1 2 a + a = 1 2015 ω 2 2 a + a = 1 2015 2 \sum_{a=1}^{2015} \omega_{1}^{2a}+\sum_{a=1}^{2015} \omega_{2}^{2a}+\sum_{a=1}^{2015} 2 .

Using the formulae for the sum of a geometric progression, we found that it is equal to

( ω 1 2 2016 1 ω 1 2 1 1 ) + ( ω 2 2 2016 1 ω 2 2 1 1 ) + 2 2015 (\frac{\omega_{1}^{2*2016}-1}{\omega_{1}^{2}-1}-1)+(\frac{\omega_{2}^{2*2016}-1}{\omega_{2}^{2}-1}-1)+2*2015 .

Now ω 1 2 2016 = ω 1 2 3 672 = ( ω 1 3 ) 2 672 = ( 1 ) 2 672 = 1 \omega_{1}^{2*2016}=\omega_{1}^{2*3*672}=(\omega_{1}^{3})^{2*672}=(-1)^{2*672}=1 .

In the same way ω 2 2 2016 = 1 \omega_{2}^{2*2016}=1 .

Thus the second term simplifies to ( 0 1 ) + ( 0 1 ) + 2 2015 = 4028 (0-1)+(0-1)+2*2015=4028 .

Finally 3 + 4028 = 4025 -3+4028=4025 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...