Quadrilateral area quest

Algebra Level 3

Consider a quadrilateral with D A B = 6 0 \angle DAB=60^{\circ} , A B C = 9 0 \angle ABC=90^{\circ} and B C D = 12 0 \angle BCD=120^{\circ} . The diagonals A C AC and B D BD intersect at M M . If M B = 1 MB=1 and M D = 2 MD=2 , find the area of the quadrilateral A B C D ABCD .


The answer is 4.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 21, 2020

Since A = 6 0 \angle A = 60^\circ , B = 9 0 \angle B = 90^\circ , and C = 12 0 \angle C = 120^\circ , D = 36 0 6 0 9 0 12 0 = 9 0 \implies \angle D = 360^\circ - 60^\circ - 90^\circ - 120^\circ = 90^\circ . Note that opposite angles A + C = 18 0 \angle A + \angle C = 180^\circ and B + D = 18 0 \angle B + \angle D = 180^\circ . This means that A B C D \implies ABCD is a cyclic quadrilateral . Let the center of the circumcircle be O O . Then D O B = 2 A = 12 0 \angle DOB = 2 \angle A = 120^\circ . Let the circumradius be r r . Then r = B D 2 csc D O B 2 = 3 2 × 2 3 = 3 r = \dfrac {BD}2 \csc \dfrac {\angle DOB}2 = \dfrac 32 \times \dfrac 2{\sqrt 3} = \sqrt 3 . By sine rule ,

{ sin B O M M B = sin B M C O B sin D O M M D = sin D M C O D = sin B M C O B sin B O M M B = sin D O M M D \begin{cases} \dfrac {\sin \angle BOM}{MB} = \dfrac {\sin \angle BMC}{OB} \\ \dfrac {\sin \angle DOM}{MD} = \dfrac {\sin \angle DMC}{OD} = \dfrac {\sin \angle BMC}{OB} \end{cases} \implies \dfrac {\sin \angle BOM}{MB} = \dfrac {\sin \angle DOM}{MD}

Let B O M = θ \angle BOM = \theta . Then

sin θ 1 = sin ( 12 0 θ ) 2 2 sin θ = 3 2 cos θ + 1 2 sin θ tan θ = 1 3 θ = 3 0 \begin{aligned} \frac {\sin \theta}1 & = \frac {\sin (120^\circ - \theta)}2 \\ 2 \sin \theta & = \frac {\sqrt 3}2 \cos \theta + \frac 12 \sin \theta \\ \tan \theta & = \frac 1{\sqrt 3} \\ \implies \theta & = 30^\circ \end{aligned}

Then the area of quadrilateral A B C D ABCD :

[ A B C D ] = 1 2 A C B N + 1 2 A C O D = A C 2 ( B N + O D ) = 2 3 2 ( r sin 3 0 + r ) = 9 2 = 4.5 [ABCD] = \frac 12 AC \cdot BN + \frac 12 AC \cdot OD = \frac {AC}2 (BN + OD) = \frac {2\sqrt 3}2(r \sin 30^\circ + r) = \frac 92 = \boxed{4.5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...