( x − 5 ) 2 − ( y + 5 ) 2 = 0
( x − 5 ) + ( y + 5 ) 2 = 1 2
√ ( x − 5 ) + ( y + 5 ) = 2 i + 4
√ ( x − 5 ) + √ ( y + 5 ) = 2 i + 2
Find the values of x and y
Give your answer as x + y
If you wish to report, post a solution or comment on the problem, go to Report, Solutions and Comments Room
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
√ ( x − 5 ) + ( y + 5 ) = 2 i + 4
Since √ ( x − 5 ) = 2 i , x − 5 = − 4 , x = 1
Now since y + 5 = 4 , y = − 1
Now substitute 1 , − 1 into the rest of the equations:
( 1 − 5 ) 2 = 1 6 − ( − 1 + 5 ) 2 = 1 6 − 1 6 = 0 - Yes
( 1 − 5 ) = − 4 + ( − 1 + 5 ) 2 = − 4 + 1 6 = 1 6 − 4 = 1 2 - Yes
√ ( 1 − 5 ) = − 2 + ( − 1 + 5 ) = − 2 + 4 = 2 - Yes
√ ( 1 − 5 ) = − 2 + √ ( − 1 + 5 ) = − 2 + 2 = 0 - Yes
Therefore, the answer is x = 1 , y = - 1
Problem Loading...
Note Loading...
Set Loading...
When we subtract (4) from (3), we get:
( y + 5 ) − ( y + 5 ) ( y + 3 ) 2 y 2 + 6 y − y + 9 − 5 y = 2 = y + 5 = 0 = − 1
Substituting y in equation (2) results value of x to be:
( x − 5 ) + ( y + 5 ) 2 ( x − 5 ) + ( − 1 + 5 ) 2 x x = 1 2 = 1 2 = 1 2 − 1 6 + 5 = 1
⟹ x + y = ( − 1 ) + ( 1 ) = 0