Quantum Computing 2.2 -- What is my quantum gate?

A qubit in the initial state 0 | 0 \rangle is sent sequentially through the quantum gates H H , R ϕ R_ \phi and H H . The measurement at the end delivers the state 0 | 0 \rangle in 75% of the cases and the state 1 | 1 \rangle in 25% of the cases.

What is on possible value for the phase angle ϕ \phi ?

Details: The gates H H and R ϕ R_\phi are described in the { 0 , 1 } \{| 0 \rangle, | 1 \rangle \} basis by the matrices H = 1 2 ( 1 1 1 1 ) R ϕ = ( 1 0 0 e i ϕ ) \begin{aligned} H &= \frac{1}{\sqrt 2} \left( \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \\ R_\phi &= \left( \begin{array}{cc} 1 & 0 \\ 0 & e^{i \phi} \end{array} \right) \end{aligned} where e i ϕ = cos ϕ + i sin ϕ e^{i \phi} = \cos \phi + i \sin \phi .

π 2 \dfrac{\pi}{2} π 5 \dfrac{\pi}{5} π 3 \dfrac{\pi}{3} π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Matrix multiplication yields H R ϕ H = 1 2 ( 1 1 1 1 ) ( 1 0 0 e i ϕ ) ( 1 1 1 1 ) = 1 2 ( 1 1 1 1 ) ( 1 1 e i ϕ e i ϕ ) = 1 2 ( 1 + e i ϕ 1 e i ϕ 1 e i ϕ 1 + e i ϕ ) = e i ϕ / 2 2 ( e i ϕ / 2 + e i ϕ / 2 e i ϕ / 2 e i ϕ / 2 e i ϕ / 2 e i ϕ / 2 e i ϕ / 2 + e i ϕ / 2 ) = e i ϕ / 2 ( cos ϕ 2 i sin ϕ 2 i sin ϕ 2 cos ϕ 2 ) \begin{aligned} H \cdot R_\phi \cdot H &= \frac{1}{2} \left( \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \cdot \left( \begin{array}{cc} 1 & 0 \\ 0 & e^{i \phi} \end{array} \right) \cdot \left( \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \\ &= \frac{1}{2} \left( \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \cdot \left( \begin{array}{cc} 1 & 1 \\ e^{i \phi} & -e^{i \phi} \end{array} \right) \\ &= \frac{1}{2} \left( \begin{array}{cc} 1 + e^{i \phi} & 1 - e^{-i \phi} \\ 1 - e^{-i \phi} & 1 + e^{i \phi}\end{array} \right) \\ &= \frac{e^{i \phi/2}}{2} \left( \begin{array}{cc} e^{-i \phi/2} + e^{i \phi/2} & e^{-i \phi/2} - e^{i \phi/2} \\ e^{-i \phi/2} - e^{i \phi/2} & e^{-i \phi/2} + e^{i \phi/2} \end{array} \right) \\ &= e^{i \phi/2} \left( \begin{array}{cc} \cos \frac{\phi}{2} & -i \sin \frac{\phi}{2} \\ -i \sin \frac{\phi}{2} & \cos \frac{\phi}{2} \end{array} \right) \end{aligned} Therefore, the final state is H R ϕ H 0 = e i ϕ / 2 ( cos ϕ 2 0 i sin ϕ 2 1 ) H \cdot R_\phi \cdot H |0\rangle = e^{i \phi/2} \cdot \left( \cos \frac{\phi}{2} |0\rangle -i \sin \frac{\phi}{2} |1 \rangle \right) The probability for measuring 0 |0\rangle results to 0 H R ϕ H 0 = cos 2 ϕ 2 = ! 3 4 ϕ = π 3 \langle 0| H \cdot R_\phi \cdot H |0\rangle = \cos^2 \frac{\phi}{2} \stackrel{!}{=} \frac{3}{4} \quad \Rightarrow \quad \boxed{\phi = \dfrac{\pi}{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...