Quantum Computing 2.3 -- Hadamard gate on the Bloch sphere

As we have already seen problem 1.4 , one can uniquely assign each state of a qubit to a point on a so-called Bloch sphere. The two-dimensional state vector is mapped to a vector in three-dimensional space ψ e i γ ( cos θ 2 sin θ 2 e i ϕ ) ( cos ϕ sin θ sin ϕ sin θ cos θ ) |\psi\rangle \equiv e^{i \gamma} \left( \begin{array}{c} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} e^{i \phi} \end{array} \right) \mapsto \left( \begin{array}{c} \cos \phi \sin \theta\\ \sin \phi \sin \theta \\ \cos \theta \end{array} \right) For example, the two basis states 0 | 0 \rangle and 1 | 1 \rangle are each mapped north and south pole of the bloch sphere and the superposition states + = ( 0 + 1 ) / 2 | + \rangle = (|0 \rangle + | 1 \rangle) / \sqrt 2 and = ( 0 1 ) / 2 | - \rangle = (| 0 \rangle - | 1 \rangle) / \sqrt 2 became opposite points on the equator of the sphere.

We now consider the Hadamard gate given in the { 0 , 1 } \{|0 \rangle, | 1 \rangle \} -basis by the matrix H = 1 2 ( 1 1 1 1 ) H = \frac{1}{\sqrt 2} \left( \begin{array}{cc} 1 & 1 \\ 1 & - 1 \end{array} \right) Visualize the effect of the Hadamard gate in the Bloch sphere representation.

What is the geometric equivalent of the operator H H in three-dimensional space?

rotation around the y ^ \hat y -axis reflection at the x = z x =z -plane rotation around the x ^ + z ^ \hat x + \hat z -axis

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We first describe the geometric operations in three-dimensional space through matrices. The reflection at an origin plane with the normal vector n ^ = ( n x , n y , n z ) \hat n = (n_x, n_y, n_z) is generally described by the operation r r 2 ( r n ^ ) n ^ = ( I 2 n ^ n ^ ) r = : R n ^ r R n ^ = ( 1 2 n x 2 2 n x n y 2 n x n z 2 n x n y 1 2 n y 2 2 n y n z 2 n x n z 2 n y n z 1 2 n z 2 ) \begin{aligned} \vec r & \mapsto \vec r - 2 (\vec r \cdot \hat n) \hat n = (I - 2 \hat n \otimes \hat n) \cdot \vec r =: \mathcal{R}_{\hat n} \cdot \vec r \\ \mathcal{R}_{\hat n} &= \left( \begin{array}{ccc} 1 - 2 n_x^2 & - 2 n_x n_y & - 2 n_x n_z \\ - 2 n_x n_y & 1 - 2 n_y^2 & - 2 n_y n_z \\ - 2 n_x n_z & - 2 n_y n_z & 1 - 2 n_z^2 \end{array} \right) \end{aligned} For the plane x = z x = z we have n ^ = 1 2 ( 1 , 0 , 1 ) \hat n = \frac{1}{\sqrt{2}} (-1,0,1) and therefore R x = z = ( 0 0 1 0 1 0 1 0 0 ) \mathcal{R}_{x = z} = \left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right) A general rotation around the axis n ^ \hat n with the angle α \alpha can be written in three-dimensional space as r ( n ^ r ) n ^ + cos α ( n ^ × r ) × n ^ + sin α ( n ^ × r ) = ( ( 1 cos α ) n ^ n ^ + I cos ( α ) + sin α i = x , y , z ( n ^ × i ^ ) i ^ ) r = : R n ^ ( α ) r R n ^ ( α ) = ( n x 2 ( 1 cos α ) + cos α n x n y ( 1 cos α ) n z sin α n x n z ( 1 cos α ) + n y sin α n x n y ( 1 cos α ) n z sin α n y 2 ( 1 cos α ) + cos α n y n z ( 1 cos α ) n x sin α n x n z ( 1 cos α ) n y sin α n x n y ( 1 cos α ) + n z sin α n z 2 ( 1 cos α ) + cos α ) \begin{aligned} \vec r & \mapsto (\hat n \cdot \vec r) \hat n + \cos \alpha (\hat n \times \vec r) \times \hat n + \sin\alpha (\hat n \times \vec r) \\ &= \left((1 - \cos \alpha) \hat n \otimes \hat n + I \cos (\alpha ) + \sin \alpha \sum_{i = x,y,z} (\hat n \times \hat i) \otimes \hat i \right) \cdot \vec r =: \mathcal{R}_{\hat n}(\alpha) \cdot \vec r \\ \mathcal{R}_{\hat n}(\alpha) &= \left( \begin{array}{ccc} n_x^2 (1- \cos \alpha) + \cos \alpha & n_x n_y ( 1 - \cos \alpha) - n_z \sin \alpha & n_x n_z ( 1 - \cos \alpha) + n_y \sin \alpha \\ n_x n_y ( 1 - \cos \alpha) - n_z \sin \alpha & n_y^2 (1 - \cos \alpha) + \cos \alpha & n_y n_z ( 1 - \cos \alpha) - n_x \sin \alpha \\ n_x n_z ( 1 - \cos \alpha) - n_y \sin \alpha & n_x n_y ( 1 - \cos \alpha) + n_z \sin \alpha & n_z^2 (1- \cos \alpha) + \cos \alpha \end{array} \right) \end{aligned} in our case, the rotation axes are n ^ = ( 0 , 1 , 0 ) \hat n = (0,1,0) and n ^ = 1 2 ( 1 , 0 , 1 ) \hat n = \frac {1} {\sqrt {2}} (1,0,1) and the rotation angles are α = π / 2 \alpha = \pi / 2 and α = π \alpha = \pi . Thus, the rotation matrices yield R y ^ ( π / 2 ) = ( 0 0 1 0 1 0 1 0 0 ) R x ^ + z ^ ( π ) = ( 0 0 1 0 1 0 1 0 0 ) \begin{aligned} \mathcal{R}_{\hat y} (\pi/2) &= \left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{array} \right) \\ \mathcal{R}_{\hat x + \hat z}(\pi) &= \left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{array} \right) \end{aligned} Obviously, these operations are different so you can try different example states to see which of these operations is the right one. You will find out that only the rotation around the x ^ + z ^ \hat x + \hat z -axis always gives the correct results. We now want to prove that this rotation is indeed equivalent to the Hadamard operation.

Application of the Hadamard gate yields ( α β ) = 1 2 ( 1 1 1 1 ) ( cos θ 2 sin θ 2 e i ϕ ) = ( cos θ 2 + sin θ 2 e i ϕ cos θ 2 sin θ 2 e i ϕ ) = e i γ ( cos θ 2 sin θ 2 e i ϕ ) β α = tan θ 2 e i ϕ = cos θ 2 sin θ 2 e i ϕ cos θ 2 + sin θ 2 e i ϕ = cos θ 2 sin θ 2 e i ϕ cos θ 2 + sin θ 2 e i ϕ cos θ 2 + sin θ 2 e i ϕ cos θ 2 + sin θ 2 e i ϕ = cos 2 θ 2 sin 2 θ 2 sin θ 2 cos θ 2 ( e i ϕ e i ϕ ) cos 2 θ 2 + sin 2 θ 2 + sin θ 2 cos θ 2 ( e i ϕ + e i ϕ ) = cos θ i sin θ sin ϕ 1 + sin θ cos ϕ tan ϕ = sin θ sin ϕ cos θ tan θ 2 = cos θ i sin θ sin ϕ 1 + sin θ cos ϕ = cos 2 θ + sin 2 θ sin 2 ϕ 1 + sin θ cos ϕ = 1 sin 2 θ cos 2 ϕ 1 + sin θ cos ϕ = 1 sin θ cos ϕ 1 + sin θ cos ϕ \begin{aligned} & & \left( \begin{array}{c} \alpha' \\ \beta' \end{array}\right) &= \frac{1}{\sqrt 2} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \left( \begin{array}{c} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2} e^{i \phi} \end{array} \right) \\ & & &= \left( \begin{array}{c} \cos\frac{\theta}{2} + \sin\frac{\theta}{2} e^{i \phi} \\ \cos \frac{\theta}{2} - \sin\frac{\theta}{2} e^{i \phi} \end{array} \right) \\ & & &= e^{i \gamma'} \left( \begin{array}{c} \cos\frac{\theta'}{2} \\ \sin\frac{\theta'}{2} e^{i \phi'} \end{array} \right) \\ \Rightarrow & & \frac{\beta'}{\alpha'} = \tan \frac{\theta'}{2} e^{i \phi'} &= \frac{\cos \frac{\theta}{2} - \sin\frac{\theta}{2} e^{i \phi}}{\cos \frac{\theta}{2} + \sin\frac{\theta}{2} e^{i \phi}} \\ & & &= \frac{\cos \frac{\theta}{2} - \sin\frac{\theta}{2} e^{i \phi}}{\cos \frac{\theta}{2} + \sin\frac{\theta}{2} e^{i \phi}} \frac{\cos \frac{\theta}{2} + \sin\frac{\theta}{2} e^{-i \phi}}{\cos \frac{\theta}{2} + \sin\frac{\theta}{2} e^{-i \phi}} \\ & & &= \frac{\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2} - \sin \frac{\theta}{2} \cos \frac{\theta}{2} (e^{i \phi} - e^{-i \phi})}{\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} + \sin \frac{\theta}{2} \cos \frac{\theta}{2} (e^{i \phi} + e^{-i \phi})} \\ & & &= \frac{\cos \theta - i \sin \theta \sin \phi}{1 + \sin \theta \cos \phi} \\ \Rightarrow & & \tan \phi' &= - \frac{\sin \theta \sin \phi}{\cos \theta} \\ \Rightarrow & & \tan \frac{\theta'}{2} &= \left|\frac{\cos \theta - i \sin \theta \sin \phi}{1 + \sin \theta \cos \phi}\right| \\ & & &= \frac{\sqrt{\cos^2 \theta + \sin^2 \theta \sin^2 \phi }}{1 + \sin \theta \cos \phi} \\ & & &= \frac{\sqrt{1 - \sin^2 \theta \cos^2 \phi }}{1 + \sin \theta \cos \phi} \\ & & &= \sqrt{\frac{1 - \sin \theta \cos \phi}{1 + \sin \theta \cos \phi}} \end{aligned} The rotation around the x ^ + z ^ \hat x + \hat z -axis yields ( x y z ) = ( cos ϕ sin θ sin ϕ sin θ cos θ ) = ( 0 0 1 0 1 0 1 0 0 ) ( cos ϕ sin θ sin ϕ sin θ cos θ ) = ( cos θ sin ϕ sin θ cos ϕ sin θ ) tan ϕ = y x = sin ϕ sin θ cos θ tan θ 2 = sin θ 2 cos θ 2 = sin θ 2 cos θ 2 cos 2 θ 2 = 2 sin θ 2 cos θ 2 1 + cos 2 θ 2 sin 2 θ 2 = sin θ 1 + cos θ = x 2 + y 2 1 + z = cos 2 θ + sin 2 ϕ sin 2 θ 1 + cos ϕ sin θ = 1 cos 2 ϕ sin 2 θ 1 + cos ϕ sin θ = 1 cos ϕ sin θ 1 + cos ϕ sin θ \begin{aligned} & & \left( \begin{array}{c} x' \\ y' \\ z' \end{array} \right) = \left( \begin{array}{c} \cos \phi' \sin \theta' \\ \sin \phi' \sin \theta' \\ \cos \theta' \end{array} \right) &= \left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{array} \right) \left( \begin{array}{c} \cos \phi \sin \theta \\ \sin \phi \sin \theta \\ \cos \theta \end{array} \right) \\ & & &= \left( \begin{array}{c} \cos \theta \\ -\sin \phi \sin \theta \\ \cos \phi \sin \theta \end{array} \right) \\ \Rightarrow & & \tan \phi' = \frac{y'}{x'} &= -\frac{\sin \phi \sin \theta}{\cos \theta} \\ \Rightarrow & & \tan \frac{\theta'}{2} &= \frac{ \sin \frac{\theta'}{2}}{\cos \frac{\theta'}{2} } \\ & & &= \frac{\sin \frac{\theta'}{2} \cos \frac{\theta'}{2}}{\cos^2 \frac{\theta'}{2} } \\ & & &= \frac{2 \sin \frac{\theta'}{2} \cos \frac{\theta'}{2}}{1 + \cos^2 \frac{\theta'}{2} - \sin^2 \frac{\theta'}{2}} \\ & & &= \frac{\sin \theta'}{1 + \cos \theta' } \\ & & &= \frac{\sqrt{x'^2 + y'^2 }}{1 + z'} \\ & & &= \frac{\sqrt{\cos^2 \theta + \sin^2 \phi \sin^2 \theta}}{1 + \cos \phi \sin \theta} \\ & & &= \frac{\sqrt{1 - \cos^2 \phi \sin^2 \theta}}{1 + \cos \phi \sin \theta} \\ & & &= \sqrt{\frac{1 - \cos \phi \sin \theta}{1 + \cos \phi \sin \theta} } \end{aligned} Thus, we get the same results for the angles θ \theta ' and ϕ \phi' in both cases, so that H R x ^ + z ^ ( π ) H \equiv \mathcal{R} _{\hat x + \hat z} (\pi) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...