Quantum Computing 3.5 -- Transformed CNOT

A qubit pair is intially in the state ψ = α 00 + β 01 + γ 10 + δ 11 ( α β γ δ ) C 4 |\psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle \equiv \left( \begin{array}{c} \alpha \\ \beta \\ \gamma\\ \delta \end{array} \right) \in \mathbb{C}^4 Now we apply a CNOT gate that has undergone a Hadamard transformation, so that we have an operation ψ = ( H H ) CNOT ( H H ) ψ |\psi'\rangle = (H \otimes H) \cdot \text{CNOT} \cdot (H \otimes H) |\psi\rangle What is the corresponding vector of the state ψ | \psi '\rangle ?

Details: The operators H H and CNOT are given in the standard basis by the following matrices H = 1 2 ( 1 1 1 1 ) CNOT = ( 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 ) \begin{aligned} H &= \frac{1}{\sqrt{2}} \left( \begin{array}{cc} 1 & 1 \\ 1 & - 1 \end{array} \right) \\ \text{CNOT} &= \left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right) \end{aligned}

( δ γ β α ) \left( \begin{array}{c} \delta \\ \gamma \\ \beta \\ \alpha \end{array}\right) ( α γ β δ ) \left( \begin{array}{c} \alpha \\ \gamma \\ \beta \\ \delta \end{array}\right) ( δ β γ α ) \left( \begin{array}{c} \delta \\ \beta \\ \gamma \\ \alpha \end{array}\right) ( α β δ γ ) \left( \begin{array}{c} \alpha \\ \beta \\ \delta \\ \gamma \end{array}\right) ( α δ γ β ) \left( \begin{array}{c} \alpha \\ \delta \\ \gamma \\ \beta \end{array}\right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Markus Michelmann
Jul 12, 2018

We first calculate the tensor product of the Hadamard operators H H = ( H I ) ( I H ) = 1 2 ( 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 ) 1 2 ( 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 ) = 1 2 ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) \begin{aligned} H \otimes H &= \left(H \otimes I \right) \cdot \left(I \otimes H \right) \\ &= \frac{1}{\sqrt{2}} \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{array} \right) \cdot \frac{1}{\sqrt{2}} \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{array} \right) \\ &= \frac{1}{2} \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{array} \right) \end{aligned} We consider the whole quantum circuit as an operator U U which results as matrix muliplication of the different operators U = ( H H ) CNOT ( H H ) = 1 4 ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) ( 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 ) ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) = 1 4 ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) = ( 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 ) = CNOT 21 \begin{aligned} U &= (H \otimes H) \cdot \text{CNOT} \cdot (H \otimes H) \\ &= \frac{1}{4} \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{array} \right) \cdot \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right) \cdot \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{array} \right) \\ &= \frac{1}{4} \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{array} \right) \cdot \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \end{array} \right) \\ &= \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right) \\ &= \text{CNOT}_{21} \end{aligned} The whole circuit can be represented by an CNOT gate CNOT 21 \text{CNOT}_{21} in which control and target qubit are interchanged. For distinction we label the ordenary CNOT gate with CNOT 12 CNOT \text {CNOT}_{12} \equiv \text{CNOT} . The effect of these gates on the basis states is CNOT 12 i j = i , i j CNOT 21 i j = i j , j \begin{aligned} \text{CNOT}_{12} |ij\rangle &= |i,i \oplus j\rangle \\ \text{CNOT}_{21} |ij\rangle &= |i \oplus j,j\rangle \end{aligned} where i , j { 0 , 1 } i,j \in \{0,1\} . By appling the CNOT 21 _{21} gate on an general state vector, we get the result CNOT 21 ( α β γ δ ) = ( 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 ) ( α β γ δ ) = ( α δ γ β ) \text{CNOT}_{21} \left( \begin{array}{cc} \alpha \\ \beta \\ \gamma \\ \delta \end{array}\right) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right) \left( \begin{array}{cc} \alpha \\ \beta \\ \gamma \\ \delta \end{array}\right) = \left( \begin{array}{cc} \alpha \\ \delta \\ \gamma \\ \beta \end{array}\right)

Hey Markus

Really loving these QC gate problems. I would love to get these onto the wiki if you're okay with that, or even get you involved in brainstorming some upcoming quantum information course content. Shoot me an email, blake at brilliant.org if you're interested!

Blake Farrow Staff - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...