Find the energy of the state given at some time by
in the harmonic oscillator potential .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Schrödinger Equation
One must read off the eigenvalue corresponding to the operator:
H = − 2 m ℏ 2 d x 2 d 2 + 2 1 m ω 2 x 2 .
Call the given function C x e − 2 ℏ m ω x 2 . Then acting with the Hamiltonian, find:
H ψ = C ( − 2 m ℏ 2 d x 2 d 2 + 2 1 m ω 2 x 2 ) x e − 2 ℏ m ω x 2 = C 2 1 m ω 2 x 3 e − 2 ℏ m ω x 2 − C 2 m ℏ 2 d x d ( e − 2 ℏ m ω x 2 − ℏ m ω x 2 e − 2 ℏ m ω x 2 ) = C 2 1 m ω 2 x 3 e − 2 ℏ m ω x 2 − C 2 m ℏ 2 ( − ℏ m ω x e − 2 ℏ m ω x 2 − ℏ m ω 2 x e − 2 ℏ m ω x 2 + ( ℏ m ω ) 2 x 3 e − 2 ℏ m ω x 2 ) = C 2 m ℏ 2 ℏ m ω 3 x e − 2 ℏ m ω x 2 = ( 2 3 ℏ ω ) ψ
The energy is thus the eigenvalue 2 3 ℏ ω .