Quantum Harmonic Oscillator Excited State

Find the energy of the state given at some time by

ψ ( x ) = ( m ω π ) 1 / 4 2 m ω x e m ω x 2 2 \psi(x) = \left(\frac{m\omega}{\pi \hbar}\right)^{1/4} \sqrt{\frac{2m\omega}{\hbar}} xe^{-\frac{m\omega x^2}{2\hbar}}

in the harmonic oscillator potential V = 1 2 m ω 2 x 2 V = \frac12 m \omega^2 x^2 .

1 2 ω \frac12 \hbar \omega 2 ω 2 \hbar \omega 3 2 ω \frac32 \hbar \omega ω \hbar \omega

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Matt DeCross
May 10, 2016

Relevant wiki: Schrödinger Equation

One must read off the eigenvalue corresponding to the operator:

H = 2 2 m d 2 d x 2 + 1 2 m ω 2 x 2 . H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac12 m \omega^2 x^2.

Call the given function C x e m ω x 2 2 Cxe^{-\frac{m\omega x^2}{2\hbar}} . Then acting with the Hamiltonian, find:

H ψ = C ( 2 2 m d 2 d x 2 + 1 2 m ω 2 x 2 ) x e m ω x 2 2 = C 1 2 m ω 2 x 3 e m ω x 2 2 C 2 2 m d d x ( e m ω x 2 2 m ω x 2 e m ω x 2 2 ) = C 1 2 m ω 2 x 3 e m ω x 2 2 C 2 2 m ( m ω x e m ω x 2 2 m ω 2 x e m ω x 2 2 + ( m ω ) 2 x 3 e m ω x 2 2 ) = C 2 2 m m ω 3 x e m ω x 2 2 = ( 3 2 ω ) ψ \begin{aligned} H\psi &= C \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac12 m \omega^2 x^2\right) xe^{-\frac{m\omega x^2}{2\hbar}} \\ &= C \frac12 m \omega^2 x^3 e^{-\frac{m\omega x^2}{2\hbar}} - C \frac{\hbar^2}{2m} \frac{d}{dx} \left(e^{-\frac{m\omega x^2}{2\hbar}} -\frac{m \omega}{\hbar} x^2 e^{-\frac{m\omega x^2}{2\hbar}} \right) \\ &=C \frac12 m \omega^2 x^3 e^{-\frac{m\omega x^2}{2\hbar}} - C \frac{\hbar^2}{2m} \left(-\frac{m\omega}{\hbar} x e^{-\frac{m\omega x^2}{2\hbar}} -\frac{m \omega}{\hbar} 2x e^{-\frac{m\omega x^2}{2\hbar}} +\left(\frac{m \omega}{\hbar}\right)^2 x^3 e^{-\frac{m\omega x^2}{2\hbar}}\right) \\ &= C \frac{\hbar^2}{2m} \frac{m \omega}{\hbar} 3x e^{-\frac{m\omega x^2}{2\hbar}} \\ &= \left(\frac{3}{2} \hbar \omega \right) \psi \end{aligned}

The energy is thus the eigenvalue 3 2 ω \frac{3}{2} \hbar \omega .

Nice explanation.

A Former Brilliant Member - 8 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...