Quantum Mechanics:Evolution of Superposition state

  • Let ψ 1 ( x ) \psi_1(x) and ψ 2 ( x ) \psi_2(x) be two normalized stationary states with energies E 1 E_1 and E 2 E_2 ,respectively with E 2 > E 1 E_2> E_1 .At t=0 the state of the system Ψ \Psi Ψ ( x , 0 ) = 1 2 ( ψ 1 ( x ) + ψ 2 ( x ) ) . \begin{aligned} \Psi (x,0)=\frac{1}{\sqrt {2}}\left(\psi _1(x)+\psi _2(x)\right). \end{aligned}
  • Find Ψ ( x , t ) \Psi(x,t)
  • 1. Ψ ( x , t ) = 1 2 ( e i E 1 t / ψ 1 ( x ) + e i E 2 t / ψ 2 ( x ) ) \Psi(x,t)=\frac{1}{\sqrt{2}}(e^{iE_1t/\hbar}\psi_1(x)+e^{iE_2t/\hbar}\psi_2(x))
  • 2. Ψ ( x , t ) = 1 2 ( e i E 1 t / ψ 1 ( x ) + e i E 2 t / ψ 2 ( x ) ) \Psi(x,t)=\frac{1}{\sqrt{2}}(e^{-iE_1t/\hbar}\psi_1(x)+e^{-iE_2t/\hbar}\psi_2(x))
  • 3. Ψ ( x , t ) = 1 2 ( e i E 1 t / ψ 1 ( x ) + i e i E 2 t / ψ 2 ( x ) ) \Psi(x,t)=\frac{1}{\sqrt{2}}(e^{-iE_1t/\hbar}\psi_1(x)+ie^{-iE_2t/\hbar}\psi_2(x))
  • 4. Ψ ( x , t ) = 1 2 ( ψ 1 ( x ) + ψ 2 ( x ) ) e i ( E 1 + E 2 ) t / \Psi(x,t)=\frac{1}{\sqrt{2}}(\psi_1(x)+\psi_2(x))e^{i(E_1+E_2)t/\hbar}
2 1 4 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

∆Lex Palacin
Dec 30, 2018

Since ψ 1 ( x ) \psi_1(x) and ψ 2 ( x ) \psi_2(x) are energy eigenstates, their evolution in time is given simply by ψ 1 ( x ) e i E 1 t / ψ 1 ( x ) \psi_1(x)\rightarrow e^{-iE_1t/\hbar}\psi_1(x) and ψ 2 ( x ) e i E 2 t / ψ 2 ( x ) \psi_2(x)\rightarrow e^{-iE_2t/\hbar}\psi_2(x) Using superposition, we then find Ψ ( x , t ) = 1 2 ( e i E 1 t / ψ 1 ( x ) + e i E 2 t / ψ 2 ( x ) ) \Psi(x,t)=\frac{1}{\sqrt{2}}(e^{-iE_1t/\hbar}\psi_1(x)+e^{-iE_2t/\hbar}\psi_2(x))

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...