Quarantine Integers!

15 ( n ! ) 2 + 1 2 n 3 \large\ \frac { 15( n!)^2 + 1}{ 2n - 3 }

Find the sum of all positive integers n n for which the expression above is an integer.


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alexander Shannon
May 30, 2020

2 n 3 2n-3 should be a prime. otherwise, there exists a prime p 2 n 3 p|2n-3 , such that p 2 n 3 2 < n p \leq \frac{2n-3}{2} < n . So, that p p would satisfy p n ! p|n! and, consequently p 15 ( n ! ) 2 + 1 p \nmid 15(n!)^2+1 .

Nest, we take p = 2 n 3 p=2n-3 to be a prime.

15 ( p + 3 2 ! ) 2 + 1 0 ( m o d p ) 15 ( p + 3 2 ! ) 2 1 ( m o d p ) 15 ( p + 3 2 ) 2 ( p + 3 2 1 ) 2 ( p 1 2 ! ) 2 1 ( m o d p ) 15 \cdot (\frac{p+3}{2}!)^2+1 \equiv 0 \ (mod \ p) \implies 15\cdot (\frac{p+3}{2}!)^2 \equiv -1 \ (mod \ p) \implies 15\cdot (\frac{p+3}{2})^2 \cdot (\frac{p+3}{2}-1)^2 \cdot (\frac{p-1}{2}!)^2 \equiv -1 \ (mod \ p)

There is a theorem, its name I don't really know, that says for primes p 3 p \geq 3

( p 1 2 ! ) 2 ( 1 ) p + 1 2 ( m o d p ) (\frac{p-1}{2}!)^2 \equiv (-1)^{\frac{p+1}{2}} \ (mod \ p)

Hence, when p 3 p\geq 3

15 ( p + 3 2 ) 2 ( p + 3 2 1 ) 2 ( p 1 2 ! ) 2 1 ( m o d p ) 15 ( p + 3 2 ) 2 ( p + 3 2 1 ) 2 ( 1 ) p + 1 2 1 ( m o d p ) 15\cdot (\frac{p+3}{2})^2 \cdot (\frac{p+3}{2}-1)^2 \cdot (\frac{p-1}{2}!)^2 \equiv -1 \ (mod \ p) \implies 15\cdot (\frac{p+3}{2})^2 \cdot (\frac{p+3}{2}-1)^2 \cdot (-1)^{\frac{p+1}{2}} \equiv -1 \ (mod \ p)

15 ( p + 3 2 ) 2 ( p + 3 2 1 ) 2 ( 1 ) p + 3 2 ( m o d p ) \implies 15\cdot (\frac{p+3}{2})^2 \cdot (\frac{p+3}{2}-1)^2 \equiv (-1)^{\frac{p+3}{2}} \ (mod \ p)

15 ( p 1 2 + 2 ) 2 ( p 1 2 + 1 ) 2 ( 1 ) p + 3 2 ( m o d p ) \implies 15\cdot (\frac{p-1}{2}+2)^2 \cdot (\frac{p-1}{2}+1)^2 \equiv (-1)^{\frac{p+3}{2}} \ (mod \ p)

note that

p 1 2 + 2 ( p 1 2 1 ) ( m o d p ) \frac{p-1}{2}+2 \equiv -(\frac{p-1}{2}-1) \ (mod \ p)

therefore,

15 ( p 1 2 1 ) 2 ( p 1 2 + 1 ) 2 ( 1 ) p + 3 2 ( m o d p ) \implies 15\cdot (\frac{p-1}{2}-1)^2 \cdot (\frac{p-1}{2}+1)^2 \equiv (-1)^{\frac{p+3}{2}} \ (mod \ p)

15 ( ( p 1 2 ) 2 1 ) 2 ( 1 ) p + 3 2 ( m o d p ) \implies 15\cdot \big((\frac{p-1}{2})^2-1 \big)^2 \equiv (-1)^{\frac{p+3}{2}} \ (mod \ p)

Multiplying both sides by 4 2 4^2 is legal, since 2 2 and p p are coprimes.

15 ( ( p 1 ) 2 4 ) 2 4 2 ( 1 ) p + 3 2 ( m o d p ) \implies 15\cdot \big((p-1)^2-4 \big)^2 \equiv 4^2 \cdot (-1)^{\frac{p+3}{2}} \ (mod \ p)

15 9 4 2 ( 1 ) p + 3 2 ( m o d p ) \implies 15\cdot 9 \equiv 4^2 \cdot (-1)^{\frac{p+3}{2}} \ (mod \ p)

if p 1 ( m o d 4 ) p \equiv 1 \ (mod \ 4) , then

p 135 16 = 119 = 7 17 p| 135 - 16= 119=7\cdot 17

but only 17 1 ( m o d 4 ) 17 \equiv 1 \ (mod \ 4) , which gives n = p + 3 2 = 10 n=\frac{p+3}{2} = 10

if p 3 ( m o d 4 ) p \equiv 3 \ (mod \ 4) , then

p 135 + 16 = 151 p| 135 + 16=151

151 3 ( m o d 4 ) 151 \equiv 3 \ (mod \ 4) is a prime and gives n = p + 3 2 = 77 n=\frac{p+3}{2} = 77

Note that we have considered p 3 n = p + 3 2 3 p\geq 3 \implies n=\frac{p+3}{2} \geq 3 . n = 1 , 2 n=1,2 both make the fraction an integer.

So, the final sum is 1 + 2 + 10 + 77 = 90 1+2+10+77=90

@Alexander Shannon , brilliant solution. FYI the theorem is Wilson's Theorem.

Priyanshu Mishra - 1 year ago

Log in to reply

thanks for letting me know.

Alexander Shannon - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...