Quartic equation through Golden-ratio

Algebra Level 4

5 x 2 + 1 5 x 2 1 + 5 x 1 5 x + 1 = 1 x + 1 + 5 2 \frac{\sqrt{5}\ x^2+1}{\sqrt{5}\ x^2-1}+\frac{5\ x-1}{5\ x+1}=\frac{1}{x}+\frac{1+\sqrt{5}}2

Let a a , b b , c c , and d d be the roots to the equation above. Find the value of k k such that 1 a 2 + 1 b 2 + 1 c 2 + 1 d 2 + k ( 1 a + 1 b + 1 c + 1 d ) = 5 \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2} + k \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)=\sqrt{5}


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 18, 2021

After expanding and rearranging 5 x 2 + 1 5 x 2 1 + 5 x 1 5 x + 1 = 1 x + 1 + 5 2 \dfrac {\sqrt5x^2+1}{\sqrt5x^2-1} + \dfrac {5x-1}{5x+1} = \dfrac 1x + \dfrac {1+\sqrt 5}2 , we have

( 15 5 25 ) x 4 ( 5 + 11 5 ) x 3 + ( 5 + 3 5 ) x 2 + ( 15 + 5 ) x + 2 = 0 (15\sqrt 5 - 25)x^4 - (5+11\sqrt 5)x^3 + (5+3\sqrt 5)x^2 + (15+\sqrt 5)x + 2 = 0

By Vieta's formula : { a + b + c + d = 5 + 11 5 15 5 25 a b + a c + a d + b c + b d + c d = 5 + 3 5 15 5 25 a b c + a b d + a c d + b c d = 15 + 5 25 15 5 a b c d = 2 15 5 25 \begin{cases} \begin{aligned} a+b+c+d & = \frac {5+11\sqrt 5}{15\sqrt 5 - 25} \\ ab+ac+ad+bc+bd+cd & = \frac {5+3\sqrt 5}{15\sqrt 5 - 25} \\ abc + abd + acd + bcd & = \frac {15+\sqrt 5}{25 - 15\sqrt 5} \\ abcd & = \frac 2{15\sqrt 5 - 25} \end{aligned} \end{cases}

Then we have:

1 a 2 + 1 b 2 + 1 c 2 + 1 d 2 = ( 1 a + 1 b + 1 c + 1 d ) 2 2 ( 1 a b + 1 a c + 1 a d + 1 b c + 1 b d + 1 c d ) = ( a b c + a b d + a c d + b c d a b c d ) 2 2 a b + a c + a d + b c + b d + c d a b c d = ( 15 + 5 2 ) 2 2 5 + 3 5 2 = ( φ 7 ) 2 2 ( 3 φ + 1 ) where φ = 1 + 5 2 denotes the golden ratio. = φ 2 + 8 φ + 47 = 9 φ + 48 \begin{aligned} \frac 1{a^2} + \frac 1{b^2} + \frac 1{c^2} + \frac 1{d^2} & = \left(\frac 1a+\frac 1b + \frac 1c + \frac 1d \right)^2 - 2 \left(\frac 1{ab}+\frac 1{ac}+\frac 1{ad}+\frac 1{bc}+\frac 1{bd}+\frac 1{cd}\right) \\ & = \left(\frac {abc + abd + acd + bcd}{abcd} \right)^2 - 2 \cdot \frac {ab+ac+ad+bc+bd+cd}{abcd} \\ & = \left(-\frac {15+\sqrt 5}2 \right)^2 - 2 \cdot \frac {5+3\sqrt 5}2 \\ & = (-\varphi - 7)^2 - 2(3\varphi +1) \quad \quad \small \blue{\text{where }\varphi = \frac {1+\sqrt 5}2 \text{ denotes the golden ratio.}} \\ & = \varphi^2 + 8 \varphi + 47 \\ & = 9\varphi + 48 \end{aligned}

And

1 a 2 + 1 b 2 + 1 c 2 + 1 d 2 + k ( 1 a + 1 b + 1 c + 1 d ) = 5 9 φ + 48 ( φ + 7 ) k = 2 φ 1 ( 9 k ) φ + 48 7 k = 2 φ 1 k = 7 \begin{aligned} \frac 1{a^2} + \frac 1{b^2} + \frac 1{c^2} + \frac 1{d^2} + k \left(\frac 1a+\frac 1b + \frac 1c + \frac 1d \right) & = \sqrt 5 \\ 9\varphi + 48 - (\varphi+7)k & = 2\varphi - 1 \\ (9-k)\varphi + 48 - 7k & = 2\varphi - 1 \\ \implies k = \boxed 7 \end{aligned}

Very cool.

Srinivasa Raghava - 1 month, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...