Quartic functions and Trigonometric functions

Level 2

Let f ( x ) = a x 4 + b x 2 + c f(x) = ax^4 + bx^2 + c and g ( x ) = sin ( x ) g(x) = \sin(x) , where f ( 0 ) = g ( 0 ) , f ( π 2 ) = g ( π 2 ) f(0) = g(0), f(\dfrac{\pi}{2}) = g(\dfrac{\pi}{2}) and 0 π 2 f ( x ) d x = 0 π 2 g ( x ) d x \int_{0}^{\dfrac{\pi}{2}} f(x) dx = \int_{0}^{\dfrac{\pi}{2}} g(x) dx .

If the area of the region bounded by g ( x ) g(x) and f ( x ) f(x) on [ 0 , π 4 ] [0,\dfrac{\pi}{4}] can be expressed as α β α ( α λ γ π α ω ) \dfrac{\sqrt{\alpha} - \beta}{\sqrt{\alpha}} - (\dfrac{\alpha\lambda - \gamma\pi}{\alpha^{\omega}}) , where α , β , λ , γ \alpha,\beta,\lambda,\gamma and ω \omega are coprime positive integers, find α + β + λ + γ + ω \alpha + \beta + \lambda + \gamma + \omega .


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 23, 2018

f ( 0 ) = g ( 0 ) = 0 c = 0 f(0) = g(0) = 0 \implies c = 0 and f ( π 2 ) = g ( π 2 ) = 1 a π 4 + 4 π 2 = 16 f(\dfrac{\pi}{2}) = g(\dfrac{\pi}{2}) = 1 \implies \boxed{a\pi^4 + 4\pi^2 = 16}

0 π 2 f ( x ) d x = 0 π 2 sin ( x ) d x = 1 \int_{0}^{\dfrac{\pi}{2}} f(x) dx = \int_{0}^{\dfrac{\pi}{2}} \sin(x) dx = 1 \implies 1 = 0 π 2 a x 4 + b x 2 d x = a x 5 5 + b x 3 3 0 π 2 = π 5 5 32 a + π 3 3 8 b 1 = \int_{0}^{\dfrac{\pi}{2}} ax^4 + bx^2 dx = \dfrac{ax^5}{5} + \dfrac{bx^3}{3}|_{0}^{\dfrac{\pi}{2}} = \dfrac{\pi^5}{5 * 32}a + \dfrac{\pi^3}{3 * 8}b \implies

3 π 5 a + 20 π 3 b = 480 3\pi^5 a + 20\pi^3 b = 480

a π 4 + 4 π 2 = 16 a\pi^4 + 4\pi^2 = 16

Solving the above system we obtain: b = 6 ( 10 π ) π 3 b = \dfrac{6(10 - \pi)}{\pi^3} and a = 40 ( π 6 ) π 5 a = \dfrac{40(\pi - 6)}{\pi^5}

0 π 4 f ( x ) d x = 0 π 4 40 ( π 6 ) π 5 x 4 + 6 ( 10 π ) π 3 x 2 d x = \implies \int_{0}^{\dfrac{\pi}{4}} f(x) dx = \int_{0}^{\dfrac{\pi}{4}} \dfrac{40(\pi - 6)}{\pi^5}x^4 + \dfrac{6(10 - \pi)}{\pi^3}x^2 dx = 8 ( π 6 ) π 5 x 5 + 2 ( 10 π π 3 x 3 0 π 4 = π 6 2 7 + 10 π 2 5 = π 6 + 40 4 π 128 = 34 3 π 128 \dfrac{8(\pi - 6)}{\pi^5} x^5 + \dfrac{2(10 - \pi}{\pi^3} x^3|_{0}^{\dfrac{\pi}{4}} = \dfrac{\pi - 6}{2^7} + \dfrac{10 - \pi}{2^5} = \dfrac{\pi - 6 + 40 - 4\pi}{128} = \dfrac{34 - 3\pi}{128}

and,

0 π 4 g ( x ) d x = 0 π 4 sin ( x ) d x = cos ( x ) 0 π 4 = 2 1 2 \implies \int_{0}^{\dfrac{\pi}{4}} g(x) dx = \int_{0}^{\dfrac{\pi}{4}} \sin(x) dx = -\cos(x)|_{0}^{\dfrac{\pi}{4}} = \dfrac{\sqrt{2} - 1}{\sqrt{2}}

0 π 4 g ( x ) f ( x ) d x = 2 1 2 ( 34 3 π 128 ) = \implies \int_{0}^{\dfrac{\pi}{4}} g(x) - f(x) dx = \dfrac{\sqrt{2} - 1}{\sqrt{2}} - (\dfrac{34 - 3\pi}{128}) = 2 1 2 ( 2 17 3 π 2 7 ) = α β α ( α λ γ π α ω ) α + β + λ + γ + ω = 30 \dfrac{\sqrt{2} - 1}{\sqrt{2}} - (\dfrac{2*17 - 3\pi}{2^7}) = \dfrac{\sqrt{\alpha} - \beta}{\sqrt{\alpha}} - (\dfrac{\alpha\lambda - \gamma\pi}{\alpha^{\omega}}) \implies \alpha + \beta + \lambda + \gamma + \omega = \boxed{30} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...