sin 4 ( 1 0 ∘ ) + sin 4 ( 5 0 ∘ ) + sin 4 ( 7 0 ∘ ) = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice observation!
sin 4 1 0 ∘ + sin 4 5 0 ∘ + sin 4 7 0 ∘ = ( 2 1 − cos 2 0 ∘ ) 2 + ( 2 1 − cos 1 0 0 ∘ ) 2 + ( 2 1 − cos 1 4 0 ∘ ) 2 = 4 1 [ ( 1 + cos 1 6 0 ∘ ) 2 + ( 1 + cos 8 0 ∘ ) 2 + ( 1 + cos 4 0 ∘ ) 2 ] = 4 1 [ 1 + 2 cos 4 0 ∘ + cos 2 4 0 ∘ + 1 + 2 cos 8 0 ∘ + cos 2 8 0 ∘ + 1 + 2 cos 1 6 0 ∘ + cos 2 1 6 0 ∘ ] = 4 1 [ 3 + 2 ( cos 4 0 ∘ + cos 8 0 ∘ + cos 1 2 0 ∘ − cos 1 2 0 ∘ + cos 1 6 0 ∘ ) + 2 1 ( cos 8 0 ∘ + 1 + cos 1 6 0 ∘ + 1 + cos 3 2 0 ∘ + 1 ) ] = 4 1 [ 3 − 2 1 + 2 1 + 2 1 ( 3 + cos 4 0 ∘ + cos 8 0 ∘ + cos 1 2 0 ∘ − cos 1 2 0 ∘ cos 1 6 0 ∘ ) ] = 4 1 [ 3 + 2 1 ( 3 − 2 1 + 2 1 ) ] = 4 1 [ 3 + 2 3 ] = 8 9 = 1 . 1 2 5
That's amazing.
Is there any other reasons / ways to get at the answer?
s i n 4 1 0 ∘ + s i n 4 5 0 ∘ + s i n 4 7 0 ∘
= ( s i n 2 1 0 ∘ ) 2 + ( s i n 2 5 0 ∘ ) 2 + ( s i n 2 7 0 ∘ ) 2
= ( 2 1 − c o s 2 0 ∘ ) 2 + ( 2 1 − c o s 1 0 0 ∘ ) 2 + ( 2 1 − c o s 1 4 0 ∘ ) 2
= 4 1 ⋅ ( 1 − 2 c o s 2 0 ∘ + c o s 2 2 0 ∘ + 1 − 2 c o s 1 0 0 ∘ + c o s 2 1 0 0 ∘ + 1 − 2 c o s 1 4 0 ∘ + c o s 2 1 4 0 ∘ )
= 4 1 ⋅ [ 3 − 2 ( c o s 2 0 ∘ + c o s 1 0 0 ∘ + c o s 1 4 0 ∘ ) + ( c o s 2 2 0 ∘ + c o s 2 1 0 0 ∘ + c o s 2 1 4 0 ∘ ) ]
∵ c o s 2 0 ∘ + c o s 1 0 0 ∘ + c o s 1 4 0 ∘
= c o s ( 6 0 ∘ − 4 0 ∘ ) + c o s ( 6 0 ∘ + 4 0 ∘ ) + c o s 1 4 0 ∘
2 c o s 6 0 ∘ c o s 4 0 ∘ + c o s 1 4 0 ∘ = c o s 4 0 ∘ + c o s 1 4 0 ∘ = 0
Also ∵ c o s 2 2 0 ∘ + c o s 2 1 0 0 ∘ + c o s 2 1 4 0 ∘
= 2 c o s 4 0 ∘ + 1 + 2 c o s 2 0 0 + 1 ∘ + 2 c o s 2 8 0 ∘ + 1
= 2 1 ( 3 + c o s 4 0 ∘ + c o s 2 0 0 ∘ + c o s 2 8 0 ∘ ) ,
and c o s 4 0 ∘ + c o s 2 0 0 ∘ + c o s 2 8 0 ∘
= c o s ( 1 2 0 ∘ − 8 0 ∘ ) + c o s ( 1 2 0 ∘ + 8 0 ∘ ) + c o s 2 8 0 ∘
= 2 c o s 1 2 0 ∘ c o s 8 0 ∘ + c o s 2 8 0 ∘ = − c o s 8 0 ∘ + c o s 2 8 0 ∘ = 0
∴ c o s 2 2 0 ∘ + c o s 2 1 0 0 ∘ + c o s 2 1 4 0 ∘ = 2 1 ( 3 + c o s 4 0 ∘ + c o s 2 0 0 ∘ + c o s 2 8 0 ∘ )
= 2 3
∴ s i n 4 1 0 ∘ + s i n 4 5 0 ∘ + s i n 4 7 0 ∘ = 4 1 ⋅ ( 3 + 2 3 ) = 1 . 1 2 5
There is a slightly easier way to to show that cos 2 0 ∘ + cos 1 4 0 ∘ + c o s 2 6 0 ∘ = 0 .
Hint for first approach: Think about the real part of e i 2 0 ∘ + e i 1 4 0 ∘ + e i 2 6 0 ∘ .
Hint for second approach: What is cos 3 θ ?
Similarly for cos 4 0 ∘ + cos 1 6 0 ∘ + cos 2 8 0 ∘ .
Problem Loading...
Note Loading...
Set Loading...
Note that 5 0 = 6 0 − 1 0 and 7 0 = 6 0 − 1 0 . Apply the compound angle formula: sin ( A ± B ) = sin ( A ) cos ( B ) ± cos ( A ) sin ( B ) :
sin ( 5 0 ∘ ) = 2 3 cos ( 1 0 ∘ ) + 2 1 sin ( 1 0 ∘ ) sin ( 7 0 ∘ ) = 2 3 cos ( 1 0 ∘ ) − 2 1 sin ( 1 0 ∘ )
By binomial expansion
sin 4 ( 5 0 ∘ ) + sin 4 ( 7 0 ∘ ) sin 4 ( 1 0 ∘ ) + sin 4 ( 5 0 ∘ ) + sin 4 ( 7 0 ∘ ) = = = 8 1 [ 9 cos 4 ( 1 0 ∘ ) + 1 8 cos 2 ( 1 0 ∘ ) sin 2 ( 1 0 ∘ ) + sin 4 ( 1 0 ∘ ) ] 8 1 [ 9 cos 4 ( 1 0 ∘ ) + 1 8 cos 2 ( 1 0 ∘ ) sin 2 ( 1 0 ∘ ) + 9 sin 4 ( 1 0 ∘ ) ] 8 9 ( cos 2 ( 1 0 ∘ ) + sin 2 ( 1 0 ∘ ) ) 2 = 8 9