Ques. -1

Calculus Level 5

x log ( 1 + 1 x ) d x = f ( x ) log ( x + 1 ) + g ( x ) x 2 + x L + c \displaystyle \int x \log\left( 1+\frac{1}{x} \right) \, dx=f(x) \log(x+1)+g(x) x^2 +x L +c

Given the above integral with arbitrary constant c c , choose the right option.


If you're looking to promote your Rank in JEE-MAINS-2015, then go for solving this set : Expected JEE-MAINS-2015 .
g(x)=logx None of the given options is true. f ( x ) = x 2 2 f(x)=\frac{x^2}{2} L=1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Bhargav Upadhyay
Mar 1, 2015

x log ( 1 + 1 x ) d x = x { log ( x + 1 ) log x } = log ( x + 1 ) ( x 2 2 1 2 ) + x 2 ( log x 2 ) + x 2 + c f ( x ) = ( x 2 2 1 2 ) g ( x ) = ( x 2 2 1 2 ) L = 1 2 N o n o f t h e g i v e n o p t i o n i s t r u e . \int { x\quad \log { (1+\frac { 1 }{ x } ) } } dx\\ =\quad \int { x\quad \{ \log { (x+1) } -\log { x } \} } \\ =\log { (x+1) } (\frac { { x }^{ 2 } }{ 2 } -\frac { 1 }{ 2 } )+{ x }^{ 2 }\quad (\frac { \log { x } }{ 2 } )+\frac { x }{ 2 } +c\\ \therefore \quad f(x)=(\frac { { x }^{ 2 } }{ 2 } -\frac { 1 }{ 2 } )\\ \therefore g(x)=(\frac { { x }^{ 2 } }{ 2 } -\frac { 1 }{ 2 } )\\ \therefore L\quad =\quad \frac { 1 }{ 2 } \\ \therefore \quad Non\quad of\quad the\quad given\quad option\quad is\quad true.

fx is x^2/2 wrong solution

Arsalan Abbas - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...