Ques. -3

Algebra Level 4

If x 2 + x + 1 = 0 x^2+x+1=0 , then r = 1 25 ( x r + 1 x r ) 2 \displaystyle \sum_{r=1}^{25} \left( x^r+\frac{1}{x^r} \right)^2 is equal to :

ω \omega is non-real cube root of unity.


If you're looking to promote your Rank in JEE-MAINS-2015, then go for solving this set : Expected JEE-MAINS-2015 .
25 ω 25 \omega 25 ω 2 25 \omega^2 25 49

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pranjal Jain
Feb 25, 2015

( ω r + 1 ω r ) 2 = 1 \left (\omega^r+\dfrac{1}{\omega^r}\right )^2=1 if r 1 , 2 m o d 3 r\equiv 1,2\mod 3 ( ω r + 1 ω r ) 2 = 4 \left (\omega^r+\dfrac{1}{\omega^r}\right )^2=4 if r 0 m o d 3 r\equiv 0\mod 3

Thus, the answer will be 8 × 4 + 1 × 17 = 49 8×4+1×17=49 , as there are 8 8 multiples of 3 3 in [ 1 , 25 ] [1,25]

Can you suggest some place from where I can learn Modular Arithmetic ? I had also tried reading from Brilliant but it was a bit too advanced for me .

Kudou Shinichi - 6 years, 3 months ago

Log in to reply

You can try from khanacedemy , as you can learn in videos, you may feel easy.

Bhargav Upadhyay - 6 years, 3 months ago
Bhargav Upadhyay
Mar 2, 2015

x 2 + x + 1 = 0 t h e n x = 1 ± i 3 2 = c o s 60 + i s i n 60 = e i 60 ( x + 1 x ) = 2 c o s 60 f r o m D e m o i v r e s t h e o r e m ( x n + 1 x n ) = 2 c o s ( 60 n ) ( x n + 1 x n ) 2 = 1 i f n m o d 3 1 o r 2 , ( x n + 1 x n ) 2 = 4 i f n m o d 3 0. n = 1 25 ( x n + 1 x n ) 2 = 4 × 4 + 4 × 8 + 1 = 49. { x }^{ 2 }+x+1=0\quad then\\ x\quad =\quad \frac { 1\pm i\sqrt { 3 } }{ 2 } =\quad cos60+i\quad sin60\quad ={ e }^{ i60 }\\ \therefore (x+\frac { 1 }{ x } )\quad =\quad 2\quad cos60\quad from\quad \\ De-moivre's\quad theorem\quad ({ x }^{ n }+\frac { 1 }{ { x }^{ n } } )=2\quad cos(60n)\\ \therefore { ({ x }^{ n }+\frac { 1 }{ { x }^{ n } } ) }^{ 2 }=\quad 1\quad if\quad n\quad mod\quad 3\quad \equiv \quad 1\quad or\quad 2,\\ \quad { ({ x }^{ n }+\frac { 1 }{ { x }^{ n } } ) }^{ 2 }=\quad 4\quad if\quad n\quad mod\quad 3\equiv 0.\\ \therefore \sum _{ n=1 }^{ 25 }{ { ({ x }^{ n }+\frac { 1 }{ { x }^{ n } } ) }^{ 2 } } =\quad 4\times 4\quad +\quad 4\times 8\quad +\quad 1\quad =\quad 49.\quad

Charles White
Jan 1, 2017

Using the Euler identity:

e i θ = cos θ + i sin θ { e}^{ i \theta }=\cos{\theta}+i\sin\theta and e i θ = cos θ i sin θ { e}^{- i \theta }=\cos{\theta}-i\sin\theta

we find:

e i θ + e i θ = 2 cos θ { e}^{ i \theta }+ { e}^{- i \theta }=2\cos{\theta}

for x 2 + x + 1 = 0 x = 1 ± i 3 2 = e ± i π 3 x^2+x+1=0 \rightarrow x=\frac{1\pm i\sqrt{3}}{2}={ e}^{\pm i \frac{\pi}{3} }

Now we simply plug and chug:

r = 1 25 ( e i π 3 r + 1 e i π 3 r ) 2 = r = 1 25 ( e i π 3 r + e i π 3 r ) 2 = r = 1 25 ( 2 cos π 3 r ) 2 \displaystyle \sum _{ r=1 }^{ 25 } \left({ e}^{ i \frac{\pi}{3}r} +\frac{1}{{ e}^{ i \frac{\pi}{3}r}}\right)^2 =\displaystyle \sum _{ r=1 }^{ 25 } \left({ e}^{ i \frac{\pi}{3}r} +{ e}^{ -i \frac{\pi}{3}r}\right)^2 = \displaystyle \sum _{ r=1 }^{ 25 } \left(2\cos {\frac{\pi}{3}r}\right)^2

or:

r = 1 25 ( e i π 3 r + e i π 3 r ) 2 = r = 1 25 ( e i 2 π 3 r + e i 2 π 3 r + 2 ) = r = 1 25 ( 2 cos 2 π 3 r + 2 ) \displaystyle \sum _{ r=1 }^{ 25 } \left({ e}^{ i \frac{\pi}{3}r} +{ e}^{ -i \frac{\pi}{3}r}\right)^2 = \displaystyle \sum _{ r=1 }^{ 25 } \left({ e}^{ i \frac{2\pi}{3}r} +{ e}^{ -i \frac{2\pi}{3}r} +2\right) = \displaystyle \sum _{ r=1 }^{ 25 } \left( 2\cos {\frac{2\pi}{3}r} + 2\right)

r = 1 25 ( 2 cos 2 π 3 r + 2 ) = 2 ( r = 1 25 cos 2 π 3 r + 25 ) \displaystyle \sum _{ r=1 }^{ 25 } \left( 2\cos {\frac{2\pi}{3}r} + 2\right) =2 \left( \displaystyle \sum _{ r=1 }^{ 25 } \cos {\frac{2\pi}{3}r} + 25 \right)

when r is not a multiple of 3: cos 2 π 3 r = 1 2 \cos {\frac{2\pi}{3}r} = -\frac{1}{2} (which is a set of 17 possible numbers)

when r is a multiple of 3: cos 2 π 3 r = 1 \cos {\frac{2\pi}{3}r} = 1 (which is a set of 8 possible numbers)

2 ( r = 1 25 cos 2 π 3 r + 25 ) = 2 ( 17 ( 1 2 ) + 8 ( 1 ) + 25 ) = 49 \therefore 2 \left( \displaystyle \sum _{ r=1 }^{ 25 } \cos {\frac{2\pi}{3}r} + 25 \right) = 2 \left( 17(\frac{-1}{2})+8(1) + 25 \right) = 49

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...