Only want beautiful numbers

Algebra Level 4

The number of integer terms in the expansion of ( 3 + 5 1 8 ) 256 \left( \sqrt{3}+5^{\frac{1}{8}} \right)^{256} is?

33 34 32 35

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mudit Bansal
Feb 25, 2015

Consider, T r + 1 = C r 256 3 256 r 2 5 r 8 { T }_{ r+1 }={ C }_{ r }^{ 256 }{ 3 }^{ \frac { 256-r }{ 2 } }{ 5 }^{ \frac { r }{ 8 } } Now for integral values: 256 r = 2 I ( I i n t e g e r ) r = 0 , 2 , 4 , 6 , . . . . ( 1 ) a n d r 8 = k ( k i n t e g e r ) r = 0 , 8 , 16 , . . . . ( 2 ) 256-r=2I(I\in integer)\\ r=0,2,4,6,....\left( 1 \right) \\ and\quad \frac { r }{ 8 } =k(k\in integer)\\ r=0,8,16,....\left( 2 \right) Now ( 1 ) ( 2 ) g i v e s \left( 1 \right) \cap \left( 2 \right) \quad gives : r = 0 , 8 , 16 , . . . . 256 r=0,8,16,....256 Hence total number of integral terms is: = 256 8 + 1 = 33 =\frac { 256 }{ 8 } +1=\boxed { 33 }

Done in the same way, nice solution!!

Bhargav Upadhyay - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...