It's Sufficiently Nested!

Algebra Level 2

1 1 + 1 1 + 1 1 + 1 x = 3 4 \cfrac1{1 + \cfrac1{1 + \cfrac1{ 1+\cfrac1x}}} =\dfrac34

Find the value of x x satisfying the equation above.


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Akshat Sharda
Mar 3, 2016

1 1 + 1 1 + 1 1 + 1 x = 3 4 1 1 + 1 1 + x x + 1 = 3 4 1 1 + x + 1 2 x + 1 = 3 4 2 x + 1 3 x + 2 = 3 4 8 x + 4 = 9 x + 6 x = 2 \begin{aligned} \cfrac1{1 + \cfrac1{1 + \cfrac1{ 1+\cfrac1x}}} =\frac34 & \Rightarrow \cfrac{1}{1+\cfrac{1}{1+\cfrac{x}{x+1}} }=\frac{3}{4} \\ \cfrac{1}{1+\cfrac{x+1}{2x+1}}=\frac{3}{4} & \Rightarrow \frac{2x+1}{3x+2} =\frac{3}{4} \\ 8x+4 & = 9x+6 \\ x& =\boxed{-2} \end{aligned}

Very nice and clear solution

Saraswat Bhattacharya - 5 years, 2 months ago
Jack Rawlin
Mar 12, 2016

1 1 + 1 1 + 1 1 + 1 x = 3 4 \huge \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{x}}}} = \frac{3}{4}

1 1 + 1 1 + 1 x + 1 x = 3 4 \huge \frac{1}{1 + \frac{1}{1 + \frac{1}{\frac{x + 1}{x}}}} = \frac{3}{4}

1 1 + 1 1 + x x + 1 = 3 4 \huge \frac{1}{1 + \frac{1}{1 + \frac{x}{x + 1}}} = \frac{3}{4}

1 1 + 1 2 x + 1 x + 1 = 3 4 \huge \frac{1}{1 + \frac{1}{\frac{2x + 1}{x + 1}}} = \frac{3}{4}

1 1 + x + 1 2 x + 1 = 3 4 \huge \frac{1}{1 + \frac{x + 1}{2x + 1}} = \frac{3}{4}

1 3 x + 2 2 x + 1 = 3 4 \huge \frac{1}{\frac{3x + 2}{2x + 1}} = \frac{3}{4}

2 x + 1 3 x + 2 = 3 4 \huge \frac{2x + 1}{3x + 2} = \frac{3}{4}

4 ( 2 x + 1 ) = 3 ( 3 x + 2 ) \huge 4(2x + 1) = 3(3x + 2)

8 x + 4 = 9 x + 6 \huge 8x + 4 = 9x + 6

4 = x + 6 \huge 4 = x + 6

2 = x \huge -2 = x

x = 2 \huge \boxed{x = -2}

Thanks for clear solution

Saraswat Bhattacharya - 5 years, 2 months ago
Raj Magesh
Mar 22, 2016

Take the reciprocal on both sides , then subtract 1 from both sides . Then repeat until you obtain the value of x x .

By computing rational equation:

1 1 + 1 1 + 1 1 + 1 x = 3 4 2 x + 1 3 x + 2 = 3 4 4 ( 2 x + 1 ) = 3 ( 3 x + 2 ) Get the LCD both sides 8 x + 4 = 9 x + 6 8 x = 9 x + 2 8 x 9 x = 2 x = 2 \begin{aligned} \cfrac1{1 + \cfrac1{1 + \cfrac1{ 1+\cfrac1x}}} =\cfrac34 & \Rightarrow \cfrac{2x+1}{3x+2} = \cfrac{3}{4} \\& \Rightarrow 4(2x+1) = 3(3x+2) \quad\quad\quad\quad\quad{\text{Get the LCD both sides}} \\& \Rightarrow 8x+4 = 9x+6 \\&\Rightarrow 8x = 9x+2 \\&\Rightarrow 8x-9x=2 \\& \Rightarrow -x =2 \end{aligned}

x = 2 \therefore x= -2 \space \square .

FIN!!! \LARGE \text{FIN!!!}

Thanks for a good and clear solution

Saraswat Bhattacharya - 5 years, 2 months ago

Log in to reply

Your welcome. Cheers!!

A Former Brilliant Member - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...