Question 1: Partial Fractions

Calculus Level 2

1 2 + 1 6 + 1 12 + 1 20 + = ? \large \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{12} + \dfrac{1}{20} + \cdots =\ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 25, 2018

S = 1 2 + 1 6 + 1 12 + 1 20 + = 1 1 2 + 1 2 3 + 1 3 4 + 1 4 5 + = 1 1 1 2 + 1 2 1 3 + 1 3 1 4 + 1 4 1 5 + = 1 1 1 2 + 1 2 1 3 + 1 3 1 4 + 1 4 1 5 + = 1 \begin{aligned} S & = {\color{#3D99F6}\frac 12} + {\color{#D61F06}\frac 16} + {\color{#3D99F6}\frac 1{12}} + {\color{#D61F06}\frac 1{20}} + \cdots \\ & = {\color{#3D99F6} \frac 1{1\cdot 2}} + {\color{#D61F06} \frac 1{2\cdot 3}} + {\color{#3D99F6} \frac 1{3\cdot 4}} + {\color{#D61F06} \frac 1{4\cdot 5}} + \cdots \\ & = {\color{#3D99F6} \frac 11 - \frac 12} + {\color{#D61F06} \frac 12 - \frac 13} + {\color{#3D99F6} \frac 13 - \frac 14} + {\color{#D61F06} \frac 14 - \frac 15} + \cdots \\ & = {\color{#3D99F6} \frac 11 -\cancel{\frac 12}} + {\color{#D61F06}\cancel{\frac 12} - \cancel{\frac 13}} + {\color{#3D99F6} \cancel{\frac 13} - \cancel{\frac 14}} + {\color{#D61F06} \cancel{\frac 14} - \cancel{\frac 15}} + \cdots \\ & = \boxed{1} \end{aligned}

. .
Apr 2, 2021

It is always 1 1 because 1 2 + 1 6 + 1 12 + 1 20 + = 1 \displaystyle \frac { 1 } { 2 } + \frac { 1 } { 6 } + \frac { 1 } { 12 } + \frac { 1 } { 20 } + \cdots = 1 .

That is because all fractions are less than one, and the numerators and denominators are all positive.

Naren Bhandari
Apr 26, 2018

S = 1 2 + 1 6 + 1 12 + 1 20 + = 1 2 ( 1 1 + 1 3 + 1 6 + 1 10 + ) S = 1 2 ( 1 1 + 1 1 + 2 + 1 1 + 2 + 3 + 1 1 + 2 + 3 + 4 + ) S = 1 2 n = 1 2 n ( n + 1 ) = 2 2 n = 1 ( 1 n 1 n + 1 ) Telescoping sum = 1 \small{ S = \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{12} + \dfrac{1}{20} + \cdots = \dfrac{1}{2}\left( \dfrac{1}{1}+ \dfrac{1}{3} + \dfrac{1}{6} + \dfrac{1}{10} + \cdots \right) \\ S = \dfrac{1}{2}\left( \dfrac{1}{1}+ \dfrac{1}{1+2} + \dfrac{1}{1+2+3} + \dfrac{1}{1+2+3+4} + \cdots \right) \\ S = \dfrac{1}{2}\sum_{n=1}^{\infty} \dfrac{2}{n(n+1)} = \dfrac{2}{2} \underbrace{\sum_{n=1}^{\infty} \left(\dfrac{1}{n} - \dfrac{1}{n+1}\right)}_{\text{Telescoping sum}}= \boxed{1}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...