Consider the equation 3 x 2 − 8 x + 1 + 9 x 2 − 2 4 x − 8 = 3 It is known that the largest root of the equation is k times the smallest root. Find k .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
3 x 2 − 8 x + 1 + 9 x 2 − 2 4 x − 8 3 x 2 − 8 x + 1 + 3 ( 3 x 2 − 8 x + 1 ) − 1 1 ⟹ y 2 + 3 y 2 − 1 1 3 y 2 − 1 1 3 y 2 − 1 1 2 y 2 + 6 y − 2 0 y 2 + 3 y − 1 0 ( y + 5 ) ( y − 2 ) ⟹ y = 3 = 3 Let y 2 = 3 x 2 − 8 x + 1 = 3 = 3 − y = y 2 − 6 y + 9 = 0 = 0 = 0 = { − 5 2 ⟹ ( − 5 ) 2 + 3 ( − 5 ) 2 − 1 1 = 3 ⟹ ( 2 ) 2 + 3 ( 2 ) 2 − 1 1 = 3 rejected accepted
⟹ 3 x 2 − 8 x + 1 3 x 2 − 8 x − 3 ( 3 x + 1 ) ( x − 3 ) ⟹ x ⟹ k = y 2 = 4 = 0 = 0 = { − 3 1 3 = − 3 1 3 = − 9
Problem Loading...
Note Loading...
Set Loading...
Write the equation as: 3 x 2 − 8 x + 1 + 3 ( x 2 − 8 x + 1 ) − 1 1 = 3 Substitute 3 x 2 − 8 x + 1 = t s.t eqn is:
t + 3 t − 1 1 = 3 . . . . . ( 1 ) Subsracting t from both sides and squaring: ⟹ 3 t − 1 1 = 9 + t − 6 t ⟹ ( t − 1 0 ) 2 = ( − 3 t ) 2 ⟹ t 2 − 2 9 t + 1 0 0 = 0 ⟹ t = 4 , 2 5
However we can reject t = 2 5 since it doesn't satisfy original eqn ( 1 ) .
Thus, t = 4 = 3 x 2 − 8 x + 1 ⟹ 3 x 2 − 8 x − 3 = 0 ⟹ x = 3 , − 1 / 3 And since 3 = − 9 × 3 − 1 hence answer is − 9 .