Find the least positive integer n for which ( 3 n − 1 ) + ( 4 n − 1 ) > ( 3 n )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Did the same way...
Log in to reply
@Ninad Akolekar @GAUTAM SHARMA
try this
https://brilliant.org/problems/find-the-areaonly-your-logic-can-help-you/?group=3UHxOzwinQpA
Using n − 1 C r + n − 1 C r − 1 = n C r : ( 3 n − 1 ) + ( 4 n − 1 ) = ( 4 n ) Using pascal's triangle it is clear to see that ( n 2 n ) > ( n ± 1 2 n ) > ( n ± 2 2 n ) > . . . > 1 ∴ M i n ( n ) = 8
( 3 n − 1 ) + ( 4 n − 1 ) ( 4 n ) 4 ! ( n − 4 ) ! n ! n − 3 n > 7 ⟹ min ( n ) > ( 3 n ) > ( 3 n ) > 3 ! ( n − 3 ) ! n ! > 4 = 8 Pascal’s formula: ( r n ) = ( r n − 1 ) + ( r − 1 n − 1 )
Problem Loading...
Note Loading...
Set Loading...
For LHS
n C r + n C r − 1 = n + 1 C r
Substituting n = n − 1 a n d r = 4
We get n C 4 > n C 3
Least integer n satisfying is 8