Question -14

Algebra Level 4

Find the least positive integer n n for which ( n 1 3 ) + ( n 1 4 ) > ( n 3 ) \binom{n-1}{3}+\binom{n-1}{4}>\binom{n}{3}


Looking for Top Rank in JEE ? Alright, then go for this set : Expected JEE-Mains-2015-B .
7 8 6 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Gautam Sharma
Mar 2, 2015

For LHS

n C r + n C r 1 = n + 1 C r ^nC_r+^nC_{r-1}=^{n+1}C_r

Substituting n = n 1 a n d r = 4 \displaystyle n=n-1 \quad and \quad r=4

We get n C 4 > n C 3 ^nC_4> ^nC3

Least integer n n satisfying is 8 8

Did the same way...

Ninad Akolekar - 6 years, 3 months ago

Log in to reply

@Ninad Akolekar @GAUTAM SHARMA

try this

https://brilliant.org/problems/find-the-areaonly-your-logic-can-help-you/?group=3UHxOzwinQpA

Yash Sharma - 6 years, 3 months ago
Curtis Clement
Mar 2, 2015

Using n 1 C r + n 1 C r 1 = n C r : \large ^{n-1}C_r + ^{n-1}C_{r-1} = ^nC_r \ : ( n 1 3 ) + ( n 1 4 ) = ( n 4 ) \binom{n-1}{3} + \binom{n-1}{4} = \binom{n}{4} Using pascal's triangle it is clear to see that ( 2 n n ) > ( 2 n n ± 1 ) > ( 2 n n ± 2 ) > . . . > 1 \binom{2n}{n} > \binom{2n}{n \pm1} > \binom{2n}{n \pm 2} >...> 1 M i n ( n ) = 8 \therefore Min(n) = 8

Chew-Seong Cheong
Sep 26, 2017

( n 1 3 ) + ( n 1 4 ) > ( n 3 ) Pascal’s formula: ( n r ) = ( n 1 r ) + ( n 1 r 1 ) ( n 4 ) > ( n 3 ) n ! 4 ! ( n 4 ) ! > n ! 3 ! ( n 3 ) ! n 3 > 4 n > 7 min ( n ) = 8 \begin{aligned} \color{#3D99F6} {n-1 \choose 3} + {n-1 \choose 4} & > {n \choose 3} & \small \color{#3D99F6} \text{Pascal's formula: } {n \choose r} = {n-1 \choose r} + {n-1 \choose r-1} \\ \color{#3D99F6} {n \choose 4} & > {n \choose 3} \\ \frac {n!}{4!(n-4)!} & > \frac {n!}{3!(n-3)!} \\ n-3 & > 4 \\ n > 7 \\ \implies \min (n) & = \boxed{8} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...