Question - 15

Algebra Level 4

The function f ( x ) = x e x 1 + x 2 + 1 f(x)=\dfrac{x}{e^x-1}+\dfrac{x}{2}+1 is __________ \text{\_\_\_\_\_\_\_\_\_\_} .

an odd function a periodic function None of these choices an even function

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sandeep Bhardwaj
Mar 2, 2015

As given :

f ( x ) = x e x 1 + x 2 + 1 f(x)=\dfrac{x}{e^x-1}+\dfrac{x}{2}+1

Let's check what f ( x ) f(-x) will be , so replacing x x by x -x .

f ( x ) = x e x 1 + x 2 + 1 \implies f(-x)=\dfrac{-x}{e^{-x}-1}+\dfrac{-x}{2}+1

= x 1 e x 1 x 2 + 1 \quad \quad =\dfrac{-x}{\frac{1}{e^x}-1}-\dfrac{x}{2}+1

= x e x 1 e x x 2 + 1 \quad \quad =\dfrac{-x \cdot e^x}{1-e^x}-\dfrac{x}{2}+1

On adding and subtracting x in the first term Numerator

= x x e x x 1 e x x 2 + 1 \quad \quad =\dfrac{x-x \cdot e^x-x}{1-e^x}-\dfrac{x}{2}+1

= x ( 1 e x ) 1 e x x 1 e x x 2 + 1 \quad \quad =\dfrac{x \cdot (1-e^x)}{1-e^x}-\dfrac{x}{1-e^x}-\dfrac{x}{2}+1

= x + x e x 1 x 2 + 1 \quad \quad=x + \dfrac{x}{e^x-1}-\dfrac{x}{2}+1

= x e x 1 + x 2 + 1 = f ( x ) \quad \quad=\dfrac{x}{e^x-1}+\dfrac{x}{2}+1=f(x) .

Now, what we found after these calculations that f ( x ) = f ( x ) \boxed{f(-x)=f(x)} .

Hence f ( x ) f(x) is an even function.

enjoy!

did the same Its an easy one.

mudit bansal - 6 years, 3 months ago
Bhargav Upadhyay
Mar 16, 2015

F o r t h e g i v e n f u n c t i o n i f w e t a k e x c o m m o n f r o m f i r s t t w o t e r m s a n d t a k e L C M t h e n i t w i l l b e i n t h e e x p o n e n t i a l f o r m o f s i n a n d c o s , T h e n i t b e c o m e s e a s y t o c o m m e n t o n o d d , e v e n a n d p e r i o d i c i t y . f ( x ) = x e x 1 + x 2 + 1 = x ( 1 e x 1 + 1 2 ) + 1 = x 2 ( e x + 1 e x 1 ) + 1 = x 2 ( e x 2 + e x 2 e x 2 e x 2 ) + 1 = i x 2 cot x 2 + 1 f ( x ) = i x 2 cot x 2 + 1 = f ( x ) For\quad the\quad given\quad function\quad if\quad we\quad take\quad 'x'\quad common\\ from\quad first\quad two\quad terms\quad and\quad take\quad LCM\quad then\\ it\quad will\quad be\quad in\quad the\quad exponential\quad form\quad of\quad sin\quad and\quad cos,\\ Then\quad it\quad becomes\quad easy\quad to\quad comment\quad on\quad \\ odd,even\quad and\quad periodicity.\\ f\left( x \right) =\quad \frac { x }{ { e }^{ x }-1 } +\frac { x }{ 2 } +1\quad =\quad x\left( \frac { 1 }{ { e }^{ x }-1 } +\frac { 1 }{ 2 } \right) +1\\ =\quad \frac { x }{ 2 } \left( \frac { { e }^{ x }+1 }{ { e }^{ x }-1 } \right) +1\quad =\quad \frac { x }{ 2 } \left( \frac { { e }^{ \frac { x }{ 2 } }+{ e }^{ \frac { -x }{ 2 } } }{ { e }^{ \frac { x }{ 2 } }-{ e }^{ \frac { -x }{ 2 } } } \right) +1\\ =\quad -i\quad \frac { x }{ 2 } \quad \cot { \frac { x }{ 2 } } +\quad 1\\ \therefore \quad f(-x)\quad =\quad -i\quad \frac { x }{ 2 } \quad \cot { \frac { x }{ 2 } } +\quad 1=\quad f(x)

I couldn't understand 4th to 5th line. Please describe.. :)

Ishaan Rakib - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...