Question -16

Calculus Level 3

Which of these answer choices is true regarding the function f ( x ) = x + x x f(x) = \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor} ?


Looking for Top Rank in JEE? Alright, then go for this set: Expected JEE-Mains-2015-B .
f(x) is discontinuous at x=1 None of thse choices f(x) is continuous but non-differntiable at x=1 f(x) is differentiable at x=1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sahil Bansal
Mar 21, 2016

Checking continuity at x=1:

Left Hand Limit: lim x 1 x + { x } ( x x = { x } ) \lim _{ x\rightarrow { 1 }^{ - } }{ \left\lfloor x \right\rfloor } +\sqrt { \left\{ x \right\} } \quad (\because \quad x-\left\lfloor x \right\rfloor =\left\{ x \right\} )

= lim h 0 1 h + { 1 h } = 0 + lim h 0 1 h = 1 =\lim _{ h\rightarrow 0 }{ \left\lfloor 1-h \right\rfloor } +\sqrt { \left\{ 1-h \right\} } \\ \\ =0+\lim _{ h\rightarrow 0 }{ \sqrt { 1-h } } \\ \\ =1

Similarly, Right Hand Limit: lim x 1 + x + { x } = lim h 0 1 + h + { 1 + h } = 1 + lim h 0 h = 1 \lim _{ x\rightarrow { 1 }^{ + } }{ \left\lfloor x \right\rfloor } +\sqrt { \left\{ x \right\} } \quad \\ \\ =\lim _{ h\rightarrow 0 }{ \left\lfloor 1+h \right\rfloor } +\sqrt { \left\{ 1+h \right\} } \\ \\ =1+\lim _{ h\rightarrow 0 }{ \sqrt { h } } \\ \\ =1

Also, value of function at x=1: f ( 1 ) = 1 + { 1 } = 1 + 0 = 1 f(1)=\left\lfloor 1 \right\rfloor +\sqrt { \left\{ 1 \right\} } =1+0=1

Since LHL=RHL=f(1), hence f(x) is continuous at x=1.


Now, checking differentiability at x=1:

Left Hand Derivative: lim x 1 f ( x ) f ( 1 ) x 1 = lim h 0 f ( 1 h ) f ( 1 ) 1 h 1 = lim h 0 1 h { 1 h } 1 h = lim h 0 0 1 h 1 h = lim h 0 ( 1 h + 1 ) h = lim h 0 ( 1 h + 1 ) h \lim _{ x\rightarrow { 1 }^{ - } }{ \cfrac { f(x)-f(1) }{ x-1 } } \quad \\ \\ =\lim _{ h\rightarrow 0 }{ \cfrac { f(1-h)-f(1) }{ 1-h-1 } } \\ =\lim _{ h\rightarrow 0 }{ \cfrac { \left\lfloor 1-h \right\rfloor -\sqrt { \left\{ 1-h \right\} } -1 }{ -h } } \\ =\lim _{ h\rightarrow 0 }{ \cfrac { 0-\sqrt { 1-h } -1 }{ -h } } \\ =\lim _{ h\rightarrow 0 }{ \cfrac { -(\sqrt { 1-h } +1) }{ -h } } \\ =\lim _{ h\rightarrow 0 }{ \cfrac { (\sqrt { 1-h } +1) }{ h } } \\

Right Hand derivative: lim x 1 + f ( x ) f ( 1 ) x 1 = lim h 0 f ( 1 + h ) f ( 1 ) 1 + h 1 = lim h 0 1 + h { 1 + h } 1 h = lim h 0 1 1 + h 1 h = lim h 0 ( 1 h ) h \lim _{ x\rightarrow { 1 }^{ + } }{ \cfrac { f(x)-f(1) }{ x-1 } } \quad \\ \\ =\lim _{ h\rightarrow 0 }{ \cfrac { f(1+h)-f(1) }{ 1+h-1 } } \\ =\lim _{ h\rightarrow 0 }{ \cfrac { \left\lfloor 1+h \right\rfloor -\sqrt { \left\{ 1+h \right\} } -1 }{ h } } \\ =\lim _{ h\rightarrow 0 }{ \cfrac { 1-\sqrt { 1+h } -1 }{ h } } \\ =\lim _{ h\rightarrow 0 }{ \cfrac { -(\sqrt { 1-h } ) }{ h } } \\

Clearly the value of left hand derivative approaches infinity and that of right hand derivative approaches negative infinity. Hence, f(x) is not differentiable at x=1.

Hence, f(x) is continuous but non-differentiable at x=1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...