Question -29

Geometry Level 3

For real values x x , consider the expression

2 cos x + sin 2 x 2 - \cos x + \sin^2 x

Find the ratio of the greatest value of the expression to its least value.


Looking for Top Rank in JEE ? Alright, then go for this set : Expected JEE-Mains-2015-B .
17 4 \frac{17}{4} 13 2 \frac{13}{2} 13 4 \frac{13}{4} 9 4 \frac{9}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let f ( x ) = 2 cos x + sin 2 x = 2 cos x + 1 cos 2 x = 3 cos x cos 2 x = 3 ( cos 2 x + cos x + 1 4 1 4 ) = 13 4 ( cos x + 1 2 ) 2 \begin{aligned} \text{Let } f(x) & = 2-\cos{x}+\sin^2{x} \\ & = 2-\cos{x}+1 - \cos^2{x} \\ & = 3-\cos{x} - \cos^2{x} \\ & = 3-\left( \cos^2{x} + \cos{x} + \frac{1}{4} - \frac{1}{4} \right) \\ & = \frac {13}{4}-\left( \cos{x} + \frac{1}{2} \right)^2 \end{aligned}

We note that: g ( x ) = ( cos x + 1 2 ) 2 > 0 g(x) = \left( \cos{x} + \frac{1}{2} \right)^2 > 0 and:

f ( x ) \Rightarrow f(x) is minimum when g ( x ) g(x) is maximum:

f m i n ( x ) = 13 4 ( 1 + 1 2 ) 2 = 13 4 9 4 = 1 \Rightarrow f_{min} (x) = \frac {13}{4} - \left( 1 + \frac{1}{2} \right)^2 = \frac {13}{4} - \frac {9}{4} = 1

f ( x ) \Rightarrow f(x) is maximum when g ( x ) g(x) is minimum:

f m a x ( x ) = 13 4 ( 1 2 + 1 2 ) 2 = 13 4 0 = 13 4 \Rightarrow f_{max} (x) = \frac {13}{4} - \left( -\frac{1}{2} + \frac{1}{2} \right)^2 = \frac {13}{4} - 0 = \frac{13}{4}

f m a x ( x ) f m i n ( x ) = 13 4 \Rightarrow \dfrac {f_{max}(x)}{f_{min}(x)} = \boxed{\dfrac{13}{4}}

Here's my approach, f ( x ) = 2 cos x + sin 2 x f\left( x \right) =2-\cos { x } +\sin ^{ 2 }{ x } Then, f ( x ) = sin x + 2 sin x cos x f^{ ' }\left( x \right) =\sin { x } +2\sin { x } \cos { x } Equating f ( x ) f^{ ' }\left( x \right) to zero , sin x ( 1 + 2 cos x ) = 0 \sin { x } (1+2\cos { x } )=0 sin x = 0 cos x = 1 2 \Rightarrow \sin { x } =0\quad \cos { x } =\frac { -1 }{ 2 } x = 0 , π x = 2 π 3 , 4 π 3 \Rightarrow x=0,\pi \quad \quad \quad x=\frac { 2\pi }{ 3 } ,\frac { 4\pi }{ 3 }

Now,

at x = 0 x=0 and x = π x=\pi , f ( x ) > 0 f^{ '' }\left( x \right) >0

at x = 2 π 3 , 4 π 3 x=\frac { 2\pi }{ 3 } ,\frac { 4\pi }{ 3 } , f ( x ) < 0 f^{ '' }\left( x \right) <0

By checking,

minimum value is at x = 0 x=0 and the minimum value is 1 1

Maximum value is at x = 2 π 3 , 4 π 3 x=\frac { 2\pi }{ 3 } ,\frac { 4\pi }{ 3 } and the maximum value is 13 4 \frac { 13 }{ 4 }

Therefore the ratio is 13 4 \boxed{\frac { 13 }{ 4 } }

Anandhu Raj - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...