Question -3

Calculus Level 4

The solution of the differential equation y d x x d y + 3 x 2 y 2 e x 3 d x = 0 y \cdot dx -x \cdot dy+3x^2y^2 \cdot e^{x^3} \cdot dx=0 is :


Looking for Top Rank in JEE ? Alright, then go for this set : Expected JEE-Mains-2015-B .
None of the given. x y e x 3 = c o n s t a n t \frac{x}{y}-e^{x^3}=constant x y + e x 3 = c o n s t a n t -\frac{x}{y}+e^{x^3}=constant x y + e x 3 = c o n s t a n t \frac{x}{y}+e^{x^3}=constant

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Bhargav Upadhyay
Mar 16, 2015

This can be also done,

d ( x y ) = y d x x d y y 2 , F o r g i v e n d i f f e r e n t i a l e q u a t i o n , d i v i d e b y y 2 b o t h t h e s i d e s y d x x d y y 2 + 3 x 2 e x 3 d x = 0 d ( x y ) + 3 x 2 e x 3 d x = 0 , T o g e t s o l u t i o n s i m p l y i n t e g r a t e b o t h t h e s i d e d ( x y ) + 3 x 2 e x 3 d x = 0 x y + e x 3 = c o n s t a n t d\left( \frac { x }{ y } \right) =\frac { y\quad dx-\quad x\quad dy }{ { y }^{ 2 } } ,\\ For\quad given\quad differential\quad equation,\quad divide\quad by\quad { y }^{ 2 }\quad both\quad the\quad sides\\ \therefore \quad \frac { y\quad dx-\quad x\quad dy }{ { y }^{ 2 } } +3{ x }^{ 2 }{ e }^{ { x }^{ 3 } }\quad dx=0\\ \therefore \quad d\left( \frac { x }{ y } \right) +3{ x }^{ 2 }{ e }^{ { x }^{ 3 } }\quad dx=0,\quad \\ To\quad get\quad solution\quad simply\quad integrate\quad both\quad the\quad side\quad \\ \int { d\left( \frac { x }{ y } \right) } +\quad \int { 3{ x }^{ 2 }{ e }^{ { x }^{ 3 } }\quad dx } =0\\ \frac { x }{ y } +{ e }^{ { x }^{ 3 } }=constant

OVER-RATED isn't it ?? NO ??

A Former Brilliant Member - 4 years, 3 months ago
Ish Mohan
Mar 3, 2015

y = m x m + x d m d x = m + 3 m 2 x 3 e x 3 3 x 2 e x 3 d x = d m m 2 A f t e r I n t e r g r a t i n g , e x 3 + C = m 1 x y + e x 3 = C y=mx\\ m+x\frac { dm }{ dx } =\quad m+3{ m }^{ 2 }{ x }^{ 3 }{ e }^{ { x }^{ 3 } }\\ \int { 3{ x }^{ 2 } } { e }^{ { x }^{ 3 } }dx=\quad \int { \frac { dm }{ { m }^{ 2 } } } \\ After\quad Intergrating,\\ { e }^{ { x }^{ 3 } }+C=\quad -{ m }^{ -1 }\\ \frac { x }{ y } +\quad { e }^{ { x }^{ 3 } }=\quad C

Caleb Townsend
Mar 2, 2015

This is a first order differential equation that can be transformed into an exact differential equation. Find an integrating factor (I used μ = y 2 \mu = y^{-2} ), integrate, then solve for the constant. Depending on how you solved, you should get C = a x y + a e x 3 C = a\frac{x}{y} + ae^{x^3} where a a and C C are arbitrary constants. Since they are both constant, the equation can be rewritten as c = x y + e x 3 \boxed{c = \frac{x}{y} + e^{x^3}} where c = C a c=\frac{C}{a} is a constant.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...