Question -4

Calculus Level 3

If f ( x ) = a = 1 n ( x 1 a ) ( x 1 a + 1 ) f(x)=\displaystyle \sum_{a=1}^n \left( x-\frac{1}{a} \right) \cdot \left( x-\frac{1}{a+1} \right) , then find the value of lim n f ( 0 ) \displaystyle \lim_{n \to \infty} f(0)


Looking for Top Rank in JEE ? Alright, then go for this set : Expected JEE-Mains-2015-B .
-1 2 1 doesn't exist

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vighnesh Raut
Feb 28, 2015

lim n f ( 0 ) = lim n a = 1 n ( 1 a ) ( 1 a + 1 ) = a = 1 1 a ( a + 1 ) = a = 1 1 a 1 a + 1 = 1 1 2 + 1 2 1 3 + 1 3 . . . . . . . . . . . . . = 1 \displaystyle{\lim _{ n\rightarrow \infty }{ f\left( 0 \right) } =\lim _{ n\rightarrow \infty }{ \sum _{ a=1 }^{ n }{ \left( -\frac { 1 }{ a } \right) } } \left( -\frac { 1 }{ a+1 } \right) =\sum _{ a=1 }^{ \infty }{ \frac { 1 }{ a(a+1) } } \\ =\quad \sum _{ a=1 }^{ \infty }{ \frac { 1 }{ a } -\frac { 1 }{ a+1 } } \\ =\quad 1-\frac { 1 }{ 2 } +\frac { 1 }{ 2 } -\frac { 1 }{ 3 } +\frac { 1 }{ 3 } -\quad .............\infty =1}

Use \ [ \ displaystyle{Enter Your latex code here} \ ] Don't Leave Space's (You know where) It Look's more good !

Deepanshu Gupta - 6 years, 3 months ago

Log in to reply

Ok....Thnx ...I will see to it from next time

Vighnesh Raut - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...