N 1 and N 2 are two 4 digit numbers. Total number of ways of forming N 1 and N 2 so that N 2 can be subtracted from N 1 without borrowing at any stage, is equal to:
∙ This question is part of the set For the JEE-nius;P
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Written properly
k = 1 ∑ 9 k ( n = 1 ∑ 1 0 n ( m = 1 ∑ 1 0 m ( j = 1 ∑ 1 0 j ) ) ) = 7 4 8 6 8 7 5
Problem Loading...
Note Loading...
Set Loading...
C o n s i d e r e a c h d e c i m a l p l a c e b u t t h e t h o u s a n d s p l a c e i n N 2 . I f i t i s f i l l e d u p b y a d i g i t i , t h e n t h e r e a r e 1 0 − i w a y s o f f i l l i n g u p t h e s a m e p l a c e i n N 1 . T h i s m a k e s u p 1 + 2 + 3 + . . . + 1 0 = 5 5 w a y s f o r e a c h d i g i t o f N 2 . A s t h e t h o u s a n d s p l a c e c a n n o t t a k e t h e d i g i t 0 , t h e r e c a n o n l y b e 5 5 − 1 0 = 4 5 w a y s o f f i l l i n g i t u p i n N 1 . S o t h e n u m b e r o f w a y s o f f o r m i n g t h e s e t w o n u m b e r s : 4 5 × 5 5 × 5 5 × 5 5 = 7 4 8 6 8 7 5 .