Question 9

N 1 N_{1} and N 2 N_{2} are two 4 digit numbers. Total number of ways of forming N 1 N_{1} and N 2 N_{2} so that N 2 N_{2} can be subtracted from N 1 N_{1} without borrowing at any stage, is equal to:

\bullet This question is part of the set For the JEE-nius;P


The answer is 7486875.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vishnu C
Mar 21, 2015

C o n s i d e r e a c h d e c i m a l p l a c e b u t t h e t h o u s a n d s p l a c e i n N 2 . I f i t i s f i l l e d u p b y a d i g i t i , t h e n t h e r e a r e 10 i w a y s o f f i l l i n g u p t h e s a m e p l a c e i n N 1 . T h i s m a k e s u p 1 + 2 + 3 + . . . + 10 = 55 w a y s f o r e a c h d i g i t o f N 2 . A s t h e t h o u s a n d s p l a c e c a n n o t t a k e t h e d i g i t 0 , t h e r e c a n o n l y b e 55 10 = 45 w a y s o f f i l l i n g i t u p i n N 1 . S o t h e n u m b e r o f w a y s o f f o r m i n g t h e s e t w o n u m b e r s : 45 × 55 × 55 × 55 = 7486875. Consider\quad each\quad decimal\quad place\quad but\quad the\quad thousands\quad place\quad in{ \quad N }_{ 2 }.\\ If\quad it\quad is\quad filled\quad up\quad by\quad a\quad digit\quad i,\quad then\quad there\quad are\quad 10-i\\ ways\quad of\quad filling\quad up\quad the\quad same\quad place\quad in\quad { N }_{ 1 }.\quad This\quad makes\quad up\\ 1+2+3+...+10=55\quad ways\quad for\quad each\quad digit \quad of { \quad N }_{ 2 } .\\ As\quad the\quad thousands\quad place\quad cannot\quad take\quad the\quad digit\quad 0,\quad there\quad can\\ only \quad be\quad 55-10=45\quad ways\quad of\quad filling\quad it\quad up\quad in\quad { N }_{ 1 }.\quad So\quad the\quad \\ number\quad of\quad ways\quad of\quad forming\quad these\quad two\quad numbers:\\ 45\times 55\times 55\times 55=\boxed { 7486875. } \quad

Trevor Arashiro
May 17, 2015

Written properly

k = 1 9 k ( n = 1 10 n ( m = 1 10 m ( j = 1 10 j ) ) ) = 7486875 \displaystyle \sum_{k=1}^9 k\left(\displaystyle \sum_{n=1}^{10}n\left(\displaystyle \sum_{m=1}^{10}m\left(\displaystyle \sum_{j=1}^{10}j \right)\right)\right)=7486875

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...