2 ∫ 2 0 1 5 2 0 1 6 ( x − 2 0 1 2 ) ( x − 2 0 1 4 ) x − 2 0 1 3 d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Its a level one problem, who made it level 3 or 2
apply partial fraction
( x − 2 0 1 2 ) ( x − 2 0 1 4 ) x − 2 0 1 3 = 2 ( x − 2 0 1 2 ) 1 + 2 ( x − 2 0 1 4 ) 1
u will get answer as l n ( 3 8 )
( x − 2 0 1 2 ) ( x − 2 0 1 4 ) = [ ( x − 2 0 1 3 ) + 1 ] [ ( x − 2 0 1 3 ) − 1 ] ( x − 2 0 1 2 ) ( x − 2 0 1 4 ) = ( x − 2 0 1 3 ) 2 − 1 Now, let: u = ( x − 2 0 1 3 ) 2 − 1 , d u = 2 ( x − 2 0 1 3 ) Then: 2 2 0 1 5 ∫ 2 0 1 6 ( x − 2 0 1 2 ) ( x − 2 0 1 4 ) x − 2 0 1 3 d x = u ( 2 0 1 5 ) ∫ u ( 2 0 1 6 ) u d u 2 2 0 1 5 ∫ 2 0 1 6 ( x − 2 0 1 2 ) ( x − 2 0 1 4 ) x − 2 0 1 3 d x = ln u ∣ u ( 2 0 1 5 ) u ( 2 0 1 6 ) 2 2 0 1 5 ∫ 2 0 1 6 ( x − 2 0 1 2 ) ( x − 2 0 1 4 ) x − 2 0 1 3 d x = ln [ ( x − 2 0 1 3 ) 2 − 1 ] ∣ ∣ ∣ 2 0 1 5 2 0 1 6 2 2 0 1 5 ∫ 2 0 1 6 ( x − 2 0 1 2 ) ( x − 2 0 1 4 ) x − 2 0 1 3 d x = ln ( 8 / 3 ) ≈ 0 . 9 8 0 8
Put x - 2013 = y , then
dx = dy
x - 2012 = y + 1
x - 2014 = y - 1
limits of y :
From 2 to 3
Now , our function to be integrated is
2y/(y + 1)(y - 1) = 1/(y +1) + 1/(y - 1)
The answer is
ln (y + 1) + ln (y - 1) ....................... from 2 to 3
= (ln 4 + ln 2) - (ln 3 + ln 1) = ln (8/3) = 0.9808
Problem Loading...
Note Loading...
Set Loading...
Make a substitution u = ( x − 2 0 1 2 ) ( x − 2 0 1 4 ) , with d u = 2 ( x − 2 0 1 3 ) d x . The integral becomes ∫ 3 8 u d u = ln ( 3 8 ) .