Question lives in 4 years

Calculus Level 3

2 2015 2016 x 2013 ( x 2012 ) ( x 2014 ) d x = ? {2\displaystyle \int_{2015}^{2016} \frac{x-2013}{(x-2012)(x-2014)} \ dx} = \ ?


The answer is 0.981.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Discussions for this problem are now closed

Otto Bretscher
Mar 20, 2015

Make a substitution u = ( x 2012 ) ( x 2014 ) u=(x-2012)(x-2014) , with d u = 2 ( x 2013 ) d x du=2(x-2013)dx . The integral becomes 3 8 d u u = ln ( 8 3 ) \int_{3}^{8}\frac{du}{u}=\ln(\frac{8}{3}) .

Tanishq Varshney
Mar 19, 2015

Its a level one problem, who made it level 3 or 2

apply partial fraction

x 2013 ( x 2012 ) ( x 2014 ) = 1 2 ( x 2012 ) + 1 2 ( x 2014 ) \frac{x-2013}{(x-2012)(x-2014)}=\frac{1}{2(x-2012)}+\frac{1}{2(x-2014)}

u will get answer as l n ( 8 3 ) ln(\frac{8}{3})

Daniel Turizo
Mar 20, 2015

( x 2012 ) ( x 2014 ) = [ ( x 2013 ) + 1 ] [ ( x 2013 ) 1 ] (x-2012)(x-2014)=[(x-2013)+1][(x-2013)-1] ( x 2012 ) ( x 2014 ) = ( x 2013 ) 2 1 (x-2012)(x-2014)=(x-2013)^2-1 Now, let: u = ( x 2013 ) 2 1 , d u = 2 ( x 2013 ) u=(x-2013)^2-1, du=2(x-2013) Then: 2 2015 2016 x 2013 ( x 2012 ) ( x 2014 ) d x = u ( 2015 ) u ( 2016 ) d u u 2\int\limits_{2015}^{2016} {\frac{{x - 2013}}{{(x - 2012)(x - 2014)}}dx = } \int\limits_{u(2015)}^{u(2016)} {\frac{{du}}{u}} 2 2015 2016 x 2013 ( x 2012 ) ( x 2014 ) d x = ln u u ( 2015 ) u ( 2016 ) 2\int\limits_{2015}^{2016} {\frac{{x - 2013}}{{(x - 2012)(x - 2014)}}dx = } \left. {\ln u} \right|_{u(2015)}^{u(2016)} 2 2015 2016 x 2013 ( x 2012 ) ( x 2014 ) d x = ln [ ( x 2013 ) 2 1 ] 2015 2016 2\int\limits_{2015}^{2016} {\frac{{x - 2013}}{{(x - 2012)(x - 2014)}}dx = } \left. {\ln \left[ {\left( {x - 2013} \right)^2 - 1} \right]} \right|_{2015}^{2016} 2 2015 2016 x 2013 ( x 2012 ) ( x 2014 ) d x = ln ( 8 / 3 ) 0.9808 2\int\limits_{2015}^{2016} {\frac{{x - 2013}}{{(x - 2012)(x - 2014)}}dx = } \ln (8/3) \approx 0.9808

Gamal Sultan
Mar 20, 2015

Put x - 2013 = y , then

dx = dy

x - 2012 = y + 1

x - 2014 = y - 1

limits of y :

From 2 to 3

Now , our function to be integrated is

2y/(y + 1)(y - 1) = 1/(y +1) + 1/(y - 1)

The answer is

ln (y + 1) + ln (y - 1) ....................... from 2 to 3

= (ln 4 + ln 2) - (ln 3 + ln 1) = ln (8/3) = 0.9808

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...