Question to study the log function.

Algebra Level 4

Let S = { x ( 10 , 10 ) : { x } = 0 , 1 2 } S = \bigg\{x \in (-10,10): \{x\} = 0, \dfrac{1}{2}\bigg\} . If f ( x ) = log 1 x ( x + 5 ) f(x) = \log_{|1-x|}{(x+5)} and g ( x ) = x 2 5 x + 7 g(x) = x^2-5|x|+7 , then the sum of all distinct solutions of the inequality log ( f ( x ) 1 ) ( g ( x ) ) 0 \log_{(f(x)-1)}{(g(x))} \leq 0 in the set S S is equal to ________ . \text{\_\_\_\_\_\_\_\_} .

77 78 80 81

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sid Patak
May 27, 2021

log ( f ( x ) 1 ) ( g ( x ) ) 0 0 < f ( x ) 1 < 1 \log_{(f(x)-1)}{(g(x))} \leq 0 \implies 0 < f(x)-1<1 and g ( x ) 1 g(x)\geq1 or f ( x ) 1 > 1 f(x)-1>1 and 0 < g ( x ) 1 0<g(x) \leq 1

0 < f ( x ) 1 < 1 1 < log 1 x ( x + 5 ) < 2 log 1 x ( x + 5 1 x ) > 0 and log 1 x ( x + 5 ( 1 x ) 2 ) < 0 0 < f(x)-1<1 \implies 1<\log_{|1-x|}{(x+5)}<2 \implies \log_{|1-x|}{\left(\dfrac{x+5}{|1-x|}\right)}>0 \text{ and } \log_{|1-x|}{\left(\dfrac{x+5}{(1-x)^2}\right)}<0

log 1 x ( x + 5 1 x ) > 0 : \log_{|1-x|}{\left(\dfrac{x+5}{|1-x|}\right)}>0 :

0 < 1 x < 1 0<|1-x|<1 and 0 < x + 5 1 x < 1 x ( 0 , 2 ) ( 5 , 2 ) = ϕ 0<\dfrac{x+5}{|1-x|}<1 \implies x \in (0,2) \cap(-5,-2) = \phi or

1 x > 1 |1-x|>1 and x + 5 1 x > 1 x ( , 0 ) ( 2 , ) ( 2 , ) = ( 2 , 0 ) ( 2 , ) \dfrac{x+5}{|1-x|}>1 \implies x \in (-\infty,0)\cup(2,\infty) \cap(-2,\infty) = (-2,0) \cup (2,\infty)

log 1 x ( x + 5 ( 1 x ) 2 ) < 0 : \log_{|1-x|}{\left(\dfrac{x+5}{(1-x)^2}\right)}<0:

0 < 1 x < 1 0<|1-x|<1 and x + 5 ( 1 x ) 2 > 1 x ( 0 , 2 ) ( 1 , 4 ) = ( 0 , 2 ) \dfrac{x+5}{(1-x)^2}>1 \implies x \in (0,2) \cap(-1,4) = (0,2) or

1 x > 1 |1-x|>1 and 0 < x + 5 ( 1 x ) 2 < 1 x ( , 0 ) ( 2 , ) ( 5 , 1 ) ( 4 , ) = ( , 1 ) ( 4 , ) 0<\dfrac{x+5}{(1-x)^2}<1 \implies x \in (-\infty,0)\cup(2,\infty) \cap(-5,-1)\cup(4,\infty)= (-\infty,-1) \cup (4,\infty)

0 < f ( x ) 1 < 1 x ( 2 , 1 ) ( 4 , ) 0 < f(x)-1<1 \implies x \in (-2,-1) \cup (4,\infty)

g ( x ) 1 x 2 5 x + 6 0 ( , 3 ] [ 2 , 2 ] [ 3 , ) g(x) \geq 1 \implies x^2 - 5|x| +6 \geq 0 \implies (-\infty,-3] \cup [-2,2]\cup[3, \infty)

x ( 2 , 1 ) ( 4 , ) \implies x \in (-2 ,-1) \cup (4,\infty)

f ( x ) 1 > 1 log 1 x ( x + 5 ( 1 x ) 2 ) > 0 x ( 1 , 0 ) ( 2 , 4 ) f(x)- 1>1 \implies \log_{|1-x|}{\left(\dfrac{x+5}{(1-x)^2}\right)}>0 \implies x \in (-1,0) \cup (2,4)

0 < g ( x ) 1 x 2 5 x + 7 1 (as g(x) is always above x-axis) x [ 3 , 2 ] [ 2 , 3 ] 0<g(x) \leq 1 \implies x^2 - 5|x|+ 7 \leq 1 \text{ (as g(x) is always above x-axis) } \implies x \in [-3,-2] \cup[2,3]

x ( 2 , 3 ] \implies x \in (2,3]

x ( 2 , 1 ) ( 2 , 3 ] ( 4 , ) \implies x\in (-2 ,-1) \cup (2,3] \cup (4, \infty)

Sum of distinct solutions in S = 1.5 + 2.5 + 3 + 4.5 + 5 + 5.5 + 6 + 6.5 + 7 + 7.5 + 8 + 8.5 + 9 + 9.5 = 81 S = -1.5+2.5+3+4.5+5+5.5+6+6.5+7+7.5+8+8.5+9+9.5 = 81

LINKS TO BRILLIANT WIKIS:

Fractional Part: {x}

Logarithmic Inequalities

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...