Quick and cute summer Sangaku #10

Geometry Level pending

The diagram shows a scalene triangle. We draw its incircle (orange). Then we draw the shortest segments between each vertex of the triangle and its incircle (red, green and blue). We give their distances:

  • Red : 66 \boxed{66}
  • Green : 40 \boxed{40}
  • Blue : 55 2 \boxed{\frac{55}{2}}
  • At last we inscribe 6 circles tangent to the incircle, to the angles bisectors and to the sides of the triangle.

  • Question : The sum of the radius of the six small circles can be written as a b c d e f g h \boxed{\frac{a-b\sqrt{c}-d\sqrt{e}-f\sqrt{g}}{h}} where a a , b b , c c , d d , e e , f f , g g and h h are positive intergers.
  • Evaluate : a e c b f d + g h \boxed{\frac{a-e}{c}-b-f-d+g-h} HINT: c=5 e=13 g=65


The answer is 113.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

First we calculate the inradius r r of A B C \triangle ABC .
On A I E \triangle AIE , sin A 2 = I E A I = r 66 + r \sin \dfrac{A}{2}=\dfrac{IE}{AI}=\dfrac{r}{66+r} . Similarly, sin B 2 = r 40 + r \sin \dfrac{B}{2}=\dfrac{r}{40+r} and sin C 2 = r 55 2 + r \sin \dfrac{C}{2}=\dfrac{r}{\frac{55}{2}+r} .

Now, we use the trigonometric identity sin 2 A 2 + sin 2 B 2 + sin 2 C 2 = 1 2 sin A 2 sin B 2 sin C 2 {{\sin }^{2}}\dfrac{A}{2}+{{\sin }^{2}}\dfrac{B}{2}+{{\sin }^{2}}\dfrac{C}{2}=1-2\sin \dfrac{A}{2}\cdot \sin \dfrac{B}{2}\cdot \sin \dfrac{C}{2} and we get the equation ( r 66 + r ) 2 + ( r 40 + r ) 2 + ( r 55 2 + r ) 2 = 1 2 r 66 + r r 40 + r r 55 2 + r ( 1 ) {{\left( \dfrac{r}{66+r} \right)}^{2}}+{{\left( \dfrac{r}{40+r} \right)}^{2}}+{{\left( \dfrac{r}{\frac{55}{2}+r} \right)}^{2}}=1-2\cdot \dfrac{r}{66+r}\cdot \dfrac{r}{40+r}\cdot \dfrac{r}{\frac{55}{2}+r} \ \ \ \ \ (1)

With the substitution x = 1 r x=\dfrac{1}{r} , ( 1 ) ( 1 66 x + 1 ) 2 + ( 1 40 x + 1 ) 2 + ( 1 27.5 x + 1 ) 2 = 1 2 1 66 x + 1 1 40 x + 1 1 27.5 x + 1 \left( 1 \right)\Leftrightarrow {{\left( \frac{1}{66x+1} \right)}^{2}}+{{\left( \frac{1}{40x+1} \right)}^{2}}+{{\left( \frac{1}{27.5x+1} \right)}^{2}}=1-2\frac{1}{66x+1}\cdot \frac{1}{40x+1}\cdot \frac{1}{27.5x+1} \Leftrightarrow \ldots ( 127776000 x 5 + 22651200 x 4 + 1488960 x 3 + 46656 x 2 + 699 x + 4 ) ( 165 x 4 ) = 0 ( 2 ) \Leftrightarrow \left( 127776000{{x}^{5}}+22651200{{x}^{4}}+1488960{{x}^{3}}+46656{{x}^{2}}+699x+4 \right)\left( 165x-4 \right)=0 \ \ \ \ \ (2)

Since all the coefficients of the 5th degree polynomial in the first brackets are positive numbers, this polynomial does not have any positive real roots, thus, for x > 0 x>0 , ( 2 ) 165 x 4 = 0 x = 4 165 \left( 2 \right)\Leftrightarrow 165x-4=0\Leftrightarrow x=\frac{4}{165} This gives r = 165 4 . \boxed{r=\frac{165}{4}}.

\ \ \

Now, we calculate some useful trigonometric numbers:
sin A 2 = r 66 + r = 165 4 66 + 165 4 sin A 2 = 5 13 \sin \dfrac{A}{2}=\dfrac{r}{66+r}=\dfrac{\frac{165}{4}}{66+\frac{165}{4}}\Rightarrow \sin \dfrac{A}{2}=\dfrac{5}{13} .
Hence, cos A 2 = 12 13 \cos \dfrac{A}{2}=\dfrac{12}{13} , sin A 4 = 1 cos A 2 2 = 1 26 \sin \dfrac{A}{4}=\sqrt{\dfrac{1-\cos \dfrac{A}{2}}{2}}=\dfrac{1}{\sqrt{26}} , cos A 4 = 5 26 \cos \dfrac{A}{4}=\dfrac{5}{\sqrt{26}} , thus, tan A 4 = 1 5 \tan \dfrac{A}{4}=\dfrac{1}{5} .

On A E I \triangle AEI , A E = A I cos A 2 = ( 66 + 165 4 ) × 12 13 = 99 AE=AI\cos \dfrac{A}{2}=\left( 66+\dfrac{165}{4} \right)\times \dfrac{12}{13}=99 .

Then, for the common tangent line segment F E FE of the incircle and the circle ( D , r 1 ) \left( D,{{r}_{1}} \right) , we know that F E = 2 r r 1 FE=2\sqrt{r\cdot {{r}_{1}}} , hence F E = 165 r 1 FE=\sqrt{165\cdot {{r}_{1}}} (Pythagoras’ theorem on I N D \triangle IND .)

\ \ \

On A F D \triangle AFD , F D = A F tan A 4 = 1 5 ( A E F E ) r 1 = 1 5 ( 99 165 r 1 ) r 1 = 231 10 33 13 10 \begin{aligned} & FD=AF\cdot \tan \dfrac{A}{4}=\dfrac{1}{5}\left( AE-FE \right) \\ & \Rightarrow {{r}_{1}}=\dfrac{1}{5}\left( 99-\sqrt{165\cdot {{r}_{1}}} \right) \\ & \Rightarrow \ldots \\ & \Rightarrow {{r}_{1}}=\dfrac{231}{10}-\dfrac{33\sqrt{13}}{10} \\ \end{aligned}

\ \ \

Working in the same way, we can calculate the radii of the other two small circles:
r 2 = 555 22 45 65 22 {{r}_{2}}=\dfrac{555}{22}-\dfrac{45\sqrt{65}}{22} and r 3 = 55 2 55 5 6 {{r}_{3}}=\dfrac{55}{2}-\dfrac{55\sqrt{5}}{6} .
The sum of the radii of the six small circles is 2 ( r 1 + r 2 + r 3 ) = 25023 3025 5 1089 13 675 65 165 2\left( {{r}_{1}}+{{r}_{2}}+{{r}_{3}} \right)=\dfrac{25023-3025\sqrt{5}-1089\sqrt{13}-675\sqrt{65}}{165} .

For the answer, a e c b f d + g h = 25023 13 5 3025 675 1089 + 65 165 = 113 \dfrac{a-e}{c}-b-f-d+g-h=\dfrac{25023-13}{5}-3025-675-1089+65-165=\boxed{113} .

Very instructive, thank you!

Valentin Duringer - 10 months, 3 weeks ago

@Valentin Duringer You welcome! Your problems are interesting. Keep up this nice work.

Thanos Petropoulos - 10 months, 3 weeks ago

Log in to reply

Wow thank you! I'll try to keep posting as long as i have ideas.

Valentin Duringer - 10 months, 3 weeks ago
Valentin Duringer
Jul 19, 2020
  • First we need to know more about the triangle, its inradius and its sides.
  • We can easily use a simple equation to solve for the inradius (a calculator is needed) sin 1 ( r 66 + r ) + sin 1 ( r 40 + r ) + sin 1 ( r r + 55 2 ) = 90 ° \boxed{\sin ^{-1}\left(\frac{r}{66+r}\right)+\sin ^{-1}\left(\frac{r}{40+r}\right)+\sin ^{-1}\left(\frac{r}{r+\frac{55}{2}}\right)=90°}
  • We get that the inradius is equal to r = 165 4 \boxed{r=\frac{165}{4}}
  • Now using the Pythagorean theorem we easily get that the sides of the triangle are: a = 125 \boxed{a=125} , b = 154 \boxed{b=154} , c = 169 \boxed{c=169}

  • Now we need to calculate the radius of the 6 small circles, although we only need to make 3 calculations. Let's try to get r 1 \boxed{r_1} , the radius of the pink circle
  • First we need to use the Pythagorean theorem : ( 165 4 + r 1 ) 2 = ( 165 4 r 1 ) 2 + y 2 \boxed{\left(\frac{165}{4}+r_1\right)^2=\left(\frac{165}{4}-r_1\right)^2+y^2} < = > <=> y = 165 r 1 \boxed{y=\sqrt{165\cdot r_1}}
  • After getting the value of y \boxed{y} in terms of r 1 \boxed{r_1} , we need to get the value of z \boxed{z} in terms of r 1 \boxed{r_1}
  • We know that the center of the pink circle is on the angle bisector of angle A K A 1 \boxed{AKA_1} , then we use the double angle identity the calculate the tangent of angle P A B 1 \boxed{PAB_1} since t a n ( A K A 1 = 33 56 \boxed{tan(AKA_1=\frac{33}{56}} - tan ( A K A 1 ) = 2 tan ( P A B 1 ) 1 tan 2 ( P A B 1 ) \boxed{\tan \left(AKA_1\right)=\frac{2\cdot \tan \left(PAB_1\right)}{1-\tan ^2\left(PAB_1\right)}} < = > <=> tan ( P A B 1 ) = 3 11 \boxed{\tan \left(PAB_1\right)=\frac{3}{11}}
  • We can conclude that z = 11 r 1 3 \boxed{z=\frac{11\cdot r_1}{3}}
  • We know that y + z = 70 \boxed{y+z=70} < = > <=> 165 r 1 + 11 r 1 3 = 70 \boxed{\sqrt{165\cdot r_1}+\frac{11\cdot r_1}{3}=70} < = > <=> r 1 = 555 45 65 22 \boxed{r_1=\frac{555-45\sqrt{65}}{22}}
  • We can use a similar method to find r 2 \boxed{r_2} and r 3 \boxed{r_3} and the three radii are :
  • r 1 = 555 45 65 22 \boxed{r_1=\frac{555-45\sqrt{65}}{22}}
  • r 2 = 55 2 55 5 6 \boxed{r_2=\frac{55}{2}-\frac{55\sqrt{5}}{6}}
  • r 2 = 231 33 13 10 \boxed{r_2=\frac{231-33\sqrt{13}}{10}}

  • 2 ( r 1 + r 2 + r 3 ) = 25023 3025 5 1089 13 675 65 165 \boxed{2\cdot \left(r_1+r_2+r_3\right)=\frac{25023-3025\sqrt{5}-1089\sqrt{13}-675\sqrt{65}}{165}}
  • 25023 13 5 3025 675 1089 + 65 165 = 113 \boxed{\frac{25023-13}{5}-3025-675-1089+65-165=113}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...