Quick fun definite integral

Calculus Level 3

0 ln ( e x + 1 ) d x = π a b \int_0^\infty \ln(e^{-x}+1)\ dx=\frac{\pi^a}{b}

If the equation above is true for positive integers a a and b b , what's the value of a + b a+b ?


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Apr 25, 2020

In the interval ( 0 , ) (0,\infty) the function e x < 1 \mathrm{e}^{-x} <1 . Keeping this in mind consider the expression for all y < 1 \lvert y \rvert<1 :

ln ( 1 + y ) = y y 2 2 + y 3 3 + \ln\left(1+y\right)=y - \frac{y^2}{2} +\frac{y^3}{3} + \dots

Since e x < 1 \mathrm{e}^{-x}<1 in the given interval, replacing y = e x y=\mathrm{e}^{-x} gives:

ln ( 1 + e x ) = e x e 2 x 2 + e 3 x 3 + \ln\left(1+\mathrm{e}^{-x}\right)=\mathrm{e}^{-x} - \frac{\mathrm{e}^{-2x}}{2} +\frac{\mathrm{e}^{-3x}}{3} + \dots

Integrating both sides with respect to x x as such:

0 ln ( 1 + e x ) d x = 0 ( e x e 2 x 2 + e 3 x 3 + ) d x \int_{0}^{\infty} \ln\left(1+\mathrm{e}^{-x}\right) \ dx = \int_{0}^{\infty} \left(\mathrm{e}^{-x} - \frac{\mathrm{e}^{-2x}}{2} +\frac{\mathrm{e}^{-3x}}{3} + \dots\right) \ dx

Denoting the above integral as S S :

S = 0 ln ( 1 + e x ) d x = 1 1 2 2 + 1 3 2 1 4 2 + \implies S = \int_{0}^{\infty} \ln\left(1+\mathrm{e}^{-x}\right) \ dx = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots

We are familiar with the following sum:

S 1 = π 2 6 = 1 + 1 2 2 + 1 3 2 + 1 4 2 + S_1=\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots

S 1 = ( 1 + 1 3 2 + ) + ( 1 2 2 + 1 4 2 + ) \implies S_1 = \left(1 + \frac{1}{3^2} + \dots\right)+\left(\frac{1}{2^2} + \frac{1}{4^2} + \dots\right)

S 1 = ( 1 + 1 3 2 + ) + 1 2 2 ( 1 + 1 2 2 + 1 3 2 + ) \implies S_1 = \left(1 + \frac{1}{3^2} + \dots\right)+\frac{1}{2^2}\left(1+\frac{1}{2^2} + \frac{1}{3^2} + \dots\right)

S 1 = ( 1 + 1 3 2 + 1 5 2 + ) + S 1 4 \implies S_1 = \left(1 + \frac{1}{3^2} + \frac{1}{5^2}+\dots\right)+\frac{S_1}{4}

3 S 1 4 = 1 + 1 3 2 + 1 5 2 + \implies \frac{3S_1}{4} = 1 + \frac{1}{3^2} + \frac{1}{5^2}+\dots

Now consider S S :

S = 1 1 2 2 + 1 3 2 1 4 2 + S = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots S = ( 1 + 1 3 2 + ) ( 1 2 2 + 1 4 2 + ) \implies S = \left(1 + \frac{1}{3^2} + \dots\right) - \left(\frac{1}{2^2} + \frac{1}{4^2} + \dots\right) S = 3 S 1 4 1 4 S 1 \implies S = \frac{3S_1}{4} - \frac{1}{4}S_1

S = S 1 2 \implies S = \frac{S_1}{2} S = π 2 12 \implies S = \frac{\pi^2}{12}

0 ln ( 1 + e x ) d x = π 2 12 \therefore \int_{0}^{\infty} \ln\left(1+\mathrm{e}^{-x}\right) \ dx= \frac{\pi^2}{12}

Thank you for writing this explanation, I'm pretty bad with latex

O N - 1 year, 1 month ago

Log in to reply

You are welcome. No worries, so was I. Just stick with it.

Karan Chatrath - 1 year, 1 month ago
Chew-Seong Cheong
Apr 25, 2020

Similar solution as @Karan Chatrath 's

I = 0 ln ( 1 + e x ) d x By Maclaurin series = 0 ( e x e 2 x 2 + e 3 x 3 e 4 x 4 + ) d x = e x + e 2 x 2 2 e 3 x 3 2 + e 4 x 4 2 0 = 1 1 2 1 2 2 + 1 3 2 1 4 2 + = ( 1 1 2 + 1 2 2 + 1 3 2 + ) 2 ( 1 2 2 + 1 4 2 + 1 6 2 + ) = ( 1 1 2 + 1 2 2 + 1 3 2 + ) 2 2 2 ( 1 1 2 + 1 2 2 + 1 3 2 + ) = 1 2 ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 ) Riemann zeta function ζ ( s ) = k = 1 1 k s = ζ ( 2 ) 2 = π 2 12 and ζ ( 2 ) = π 2 6 \begin{aligned} I & = \int_0^\infty \ln(1+e^{-x}) \ dx & \small \blue{\text{By Maclaurin series}} \\ & = \int_0^\infty \left(e^{-x} - \frac {e^{-2x}}2 + \frac {e^{-3x}}3 - \frac {e^{-4x}}4 + \cdots \right) dx \\ & = - e^{-x} + \frac {e^{-2x}}{2^2} - \frac {e^{-3x}}{3^2} + \frac {e^{-4x}}{4^2} - \cdots \bigg|_0^\infty \\ & = \frac 1{1^2} - \frac 1{2^2} + \frac 1{3^2} - \frac 1{4^2} + \cdots \\ & = \left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \cdots \right) - 2 \left(\frac 1{2^2} + \frac 1{4^2} + \frac 1{6^2} + \cdots \right) \\ & = \left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \cdots \right) - \frac 2{2^2} \left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \cdots \right) \\ & = \frac 12 \left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} \cdots \right) & \small \blue{\text{Riemann zeta function }\zeta (s) = \sum_{k=1}^\infty \frac 1{k^s}} \\ & = \frac {\zeta (2)}2 = \frac {\pi^2}{12} & \small \blue{\text{and }\zeta(2) = \frac {\pi^2} 6} \end{aligned}

Therefore, a + b = 2 + 12 = 14 a+b = 2+12=\boxed{14} .


References:

Sir , we could have directly used the concept of dirichlet eta function in the evaluation of the summation.

Prithwish Mukherjee - 1 year, 1 month ago

Log in to reply

Thanks. I don't know about Dirichlet eta. I will check it out

Chew-Seong Cheong - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...