∫ 0 ∞ ln ( e − x + 1 ) d x = b π a
If the equation above is true for positive integers a and b , what's the value of a + b ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thank you for writing this explanation, I'm pretty bad with latex
Log in to reply
You are welcome. No worries, so was I. Just stick with it.
Similar solution as @Karan Chatrath 's
I = ∫ 0 ∞ ln ( 1 + e − x ) d x = ∫ 0 ∞ ( e − x − 2 e − 2 x + 3 e − 3 x − 4 e − 4 x + ⋯ ) d x = − e − x + 2 2 e − 2 x − 3 2 e − 3 x + 4 2 e − 4 x − ⋯ ∣ ∣ ∣ ∣ 0 ∞ = 1 2 1 − 2 2 1 + 3 2 1 − 4 2 1 + ⋯ = ( 1 2 1 + 2 2 1 + 3 2 1 + ⋯ ) − 2 ( 2 2 1 + 4 2 1 + 6 2 1 + ⋯ ) = ( 1 2 1 + 2 2 1 + 3 2 1 + ⋯ ) − 2 2 2 ( 1 2 1 + 2 2 1 + 3 2 1 + ⋯ ) = 2 1 ( 1 2 1 + 2 2 1 + 3 2 1 + 4 2 1 ⋯ ) = 2 ζ ( 2 ) = 1 2 π 2 By Maclaurin series Riemann zeta function ζ ( s ) = k = 1 ∑ ∞ k s 1 and ζ ( 2 ) = 6 π 2
Therefore, a + b = 2 + 1 2 = 1 4 .
References:
Sir , we could have directly used the concept of dirichlet eta function in the evaluation of the summation.
Log in to reply
Thanks. I don't know about Dirichlet eta. I will check it out
Problem Loading...
Note Loading...
Set Loading...
In the interval ( 0 , ∞ ) the function e − x < 1 . Keeping this in mind consider the expression for all ∣ y ∣ < 1 :
ln ( 1 + y ) = y − 2 y 2 + 3 y 3 + …
Since e − x < 1 in the given interval, replacing y = e − x gives:
ln ( 1 + e − x ) = e − x − 2 e − 2 x + 3 e − 3 x + …
Integrating both sides with respect to x as such:
∫ 0 ∞ ln ( 1 + e − x ) d x = ∫ 0 ∞ ( e − x − 2 e − 2 x + 3 e − 3 x + … ) d x
Denoting the above integral as S :
⟹ S = ∫ 0 ∞ ln ( 1 + e − x ) d x = 1 − 2 2 1 + 3 2 1 − 4 2 1 + …
We are familiar with the following sum:
S 1 = 6 π 2 = 1 + 2 2 1 + 3 2 1 + 4 2 1 + …
⟹ S 1 = ( 1 + 3 2 1 + … ) + ( 2 2 1 + 4 2 1 + … )
⟹ S 1 = ( 1 + 3 2 1 + … ) + 2 2 1 ( 1 + 2 2 1 + 3 2 1 + … )
⟹ S 1 = ( 1 + 3 2 1 + 5 2 1 + … ) + 4 S 1
⟹ 4 3 S 1 = 1 + 3 2 1 + 5 2 1 + …
Now consider S :
S = 1 − 2 2 1 + 3 2 1 − 4 2 1 + … ⟹ S = ( 1 + 3 2 1 + … ) − ( 2 2 1 + 4 2 1 + … ) ⟹ S = 4 3 S 1 − 4 1 S 1
⟹ S = 2 S 1 ⟹ S = 1 2 π 2
∴ ∫ 0 ∞ ln ( 1 + e − x ) d x = 1 2 π 2