Quick Problem!

Geometry Level 3

In A B C \triangle{ABC} , the altitude C D = a \overline{CD} = a and A B = a + 1 \overline{AB} = a + 1 . Let E E and F F be the midpoints of A D \overline{AD} and C B \overline{CB} respectively and form segment E F \overline{EF} .

If the value of a a for which E F = 5 + 2 5 2 \overline{EF} = \dfrac{\sqrt{5 + 2\sqrt{5}}}{2} can be expressed as a = α + β λ a = \dfrac{\alpha + \sqrt{\beta}}{\lambda} , where α , β \alpha, \beta and λ \lambda are coprime positive integers, find α + β + λ \alpha + \beta + \lambda .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 26, 2021

Using the above diagram C D B F G B y h = 2 y a h = a 2 \triangle{CDB} \sim \triangle{FGB} \implies \dfrac{y}{h} = \dfrac{2y}{a} \implies h = \dfrac{a}{2}

and G B x = h a = 1 2 G B = x 2 E G = a + 1 x 2 ( a + 1 x 2 ) = a + 1 2 \dfrac{\overline{GB}}{x} = \dfrac{h}{a} = \dfrac{1}{2} \implies \overline{GB} = \dfrac{x}{2} \implies \overline{EG} = a + 1 - \dfrac{x}{2} - (\dfrac{a + 1 - x}{2}) = \dfrac{a + 1}{2}

E F = 2 a 2 + 2 a + 1 2 = 5 + 2 5 2 \implies \overline{EF} = \dfrac{\sqrt{2a^2 + 2a + 1}}{2} = \dfrac{\sqrt{5 + 2\sqrt{5}}}{2} \implies

2 a 2 + 2 a + 1 = 5 + 2 5 2 a 2 + 2 a 2 ( 2 + 5 ) = 0 2a^2 + 2a + 1 = 5 + 2\sqrt{5} \implies 2a^2 + 2a - 2(2 + \sqrt{5}) = 0 \implies

a 2 + a ( 2 + 5 ) = 0 a^2 + a - (2 + \sqrt{5}) = 0 and dropping the negative root

a = 1 + 9 + 4 5 2 = 1 + ( 5 + 2 ) 2 = 1 + 5 2 = α + β λ \implies a = \dfrac{-1 + \sqrt{9 + 4\sqrt{5}}}{2} = \dfrac{-1 + (\sqrt{5} + 2)}{2} = \dfrac{1 + \sqrt{5}}{2} = \dfrac{\alpha + \sqrt{\beta}}{\lambda}

α + β + λ = 8 \implies \alpha + \beta + \lambda = \boxed{8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...