There are pairs of polynomials with n integer roots such that P n ( x ) = Q n ( x ) + const .
For example (see image), P 7 ( x ) = x 7 + 7 x 6 − 4 1 9 3 x 5 − 2 1 0 3 5 x 4 + 4 6 7 4 5 4 4 x 3 + 1 4 1 0 7 8 2 8 x 2 − 1 2 0 4 6 6 9 1 5 2 x − 8 1 9 7 8 6 2 4 0 0 .
Find Q 7 ( 0 ) .
D. G. Fon-Der-Flaass talked about this problem.
Bonus: How generate this pairs?
My examples for n = 8
P 8 ( x ) = ( x 2 − 5 0 2 ) ( x 2 − 3 6 2 ) ( x 2 − 3 1 2 ) ( x 2 − 7 2 ) , P 8 ( x ) = ( x 2 − 5 0 2 ) ( x 2 − 4 2 2 ) ( x 2 − 3 2 2 ) ( x 2 − 4 2 ) , P 8 ( x ) = ( x 2 − 4 7 2 ) ( x 2 − 4 3 2 ) ( x 2 − 1 6 2 ) ( x 2 − 1 5 2 ) , P 8 ( x ) = ( x 2 − 2 5 2 ) ( x 2 − 2 1 2 ) ( x 2 − 1 6 2 ) ( x 2 − 2 2 ) , P 8 ( x ) = ( x 2 − 3 4 2 ) ( x 2 − 2 5 2 ) ( x 2 − 2 4 2 ) ( x 2 − 7 2 ) , Q 8 ( x ) = ( x 2 − 4 9 2 ) ( x 2 − 4 1 2 ) ( x 2 − 2 0 2 ) ( x 2 − 1 8 2 ) Q 8 ( x ) = ( x 2 − 4 8 2 ) ( x 2 − 4 6 2 ) ( x 2 − 1 0 2 ) ( x 2 − 2 8 2 ) Q 8 ( x ) = ( x 2 − 4 8 2 ) ( x 2 − 4 1 2 ) ( x 2 − 2 3 2 ) ( x 2 − 5 2 ) Q 8 ( x ) = ( x 2 − 2 4 2 ) ( x 2 − 2 3 2 ) ( x 2 − 1 4 2 ) ( x 2 − 5 2 ) Q 8 ( x ) = ( x 2 − 3 2 2 ) ( x 2 − 3 1 2 ) ( x 2 − 1 5 2 ) ( x 2 − 1 4 2 )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
How would you have solved this question if the image were not provided?
Problem Loading...
Note Loading...
Set Loading...
From a computer search (cheating and estimating the roots from the picture!), I get P 7 ( x ) Q 7 ( x ) = ( x − 5 0 ) ( x − 3 2 ) ( x − 2 3 ) ( x + 8 ) ( x + 1 4 ) ( x + 3 9 ) ( x + 5 1 ) = ( x − 4 9 ) ( x − 3 7 ) ( x − 1 2 ) ( x − 6 ) ( x + 2 5 ) ( x + 3 4 ) ( x + 5 2 ) so Q 7 ( 0 ) = 5 7 6 9 6 9 1 2 0 0 .
This seems like a difficult problem in general--we've got six equations in seven unknowns, with a known integral solution, and we need to find another integral solution.