Quintic Expression

The value of the given expression is

( 41 + 29 2 ) 1 / 5 + ( 41 29 2 ) 1 / 5 (41 + 29\sqrt{2})^{1/5} + (41 - 29\sqrt{2})^{1/5}

2 2 5 11 5 - \sqrt{11} 3 3 5 7 5 - \sqrt{7}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Danish Ahmed
Jan 4, 2015

Let a = u + v a = u + v where u = ( 41 + 29 2 ) 1 / 5 u = (41 + 29\sqrt{2})^{1/5} and v = ( 41 29 2 ) 1 / 5 v = (41 -29\sqrt{2})^{1/5} Then u v = ( 41 + 29 2 ) 1 / 5 ( 41 29 2 ) 1 / 5 = ( 4 1 2 2 2 9 2 ) 1 / 5 = ( 1 ) 1 / 5 = 1 uv = (41 + 29\sqrt{2})^{1/5}(41 - 29\sqrt{2})^{1/5} = (41^2 - 2*29^2)^{1/5} = (-1)^{1/5} = -1 Let a = ( u + v ) a = (u + v) a 5 = u 5 + 5 u 4 v + 10 u 3 v 2 + 10 u 2 v 3 + 5 u v 4 + v 5 = u 5 + v 5 + 5 u v ( u 3 + v 3 ) + 10 u 2 v 2 ( u + v ) = u 5 + v 5 + 5 u v [ ( u + v ) 3 3 u v ( u + v ) ] + 10 ( u v ) 2 ( u + v ) = 41 + 29 2 + 41 29 2 + 5 ( 1 ) [ a 3 3 ( 1 ) a ] + 10 ( 1 ) 2 a = 82 5 a 3 15 a + 10 a \begin{aligned} a^5 & = u^5 + 5u^4v + 10u^3v^2 + 10u^2v^3 + 5uv^4 +v^5 \\ & = u^5 +v^5 + 5uv(u^3 + v^3) + 10u^2v^2(u + v) \\ & = u^5 +v^5 + 5uv[(u + v)^3 - 3uv(u + v)] + 10(uv)^2(u + v) \\ & = 41 + 29\sqrt{2} + 41 - 29\sqrt{2} + 5(-1)[a^3 - 3(-1)a] + 10(-1)^2a \\ & = 82 - 5a^3 - 15a +10a \end{aligned}

Giving a 5 + 5 a 3 + 5 a 82 = 0 a^5 + 5a^3 + 5a - 82 =0 ; Factoring : ( a 2 ) ( a 4 + 2 a 3 + 9 a 2 + 18 a + 41 ) = 0 (a - 2)(a^4 +2a^3 + 9a^2 + 18a + 41) = 0 Which implies that a = 2 a = \boxed{2}

Solved the same way (+1) ! :)

Aditya Sky - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...