Quite close to Ramanujan!

Algebra Level 2

If x 300 < 172 8 200 x^{300}<1728^{200} , then find the greatest possible integral value of x x .

Hint: 1728 = 1 2 3 1728 = 12^3

144 12 None of the given. 11 143

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Abhishek Sharma
May 12, 2015

x 300 < 172 8 200 x^{300}<1728^{200} x 300 < 1 2 600 x^{300}<12^{600} x < 1 2 2 x<12^{2} x < 144 x<144 Therefore the greatest possible integral value of x x is 143 143 .

Moderator note:

Correct! Bonus question: What does the title of this problem (Quite close to Ramanujan!) mean?

1729 is the hardy–ramanujan number

Kerwin Chen - 6 years ago

I understand the solution, but how can one randomly know that 1728^200 = 12^600?

Sergiu Falschername - 5 years, 7 months ago

Log in to reply

Read the question properly.

Abhishek Sharma - 5 years, 6 months ago
Arulx Z
May 13, 2015

x 300 < 1728 200 x 3 < 1728 2 x 3 < ( 2 6 3 3 ) 2 x < 2 4 3 2 x < 144 x = 143 { x }^{ 300 }<{ 1728 }^{ 200 }\\ { x }^{ 3 }<{ 1728 }^{ 2 }\\ { x }^{ 3 }<({ { 2 }^{ 6 }\cdot { 3 }^{ 3 }) }^{ 2 }\\ x<{ 2 }^{ 4 }\cdot { 3 }^{ 2 }\\ x<144\\ x=143

Ashish Menon
Apr 4, 2016

x 300 < 172 8 200 x 2 300 < 12 3 200 x 600 < 12 600 x < 12 Squaring on both sides : x < 144 \begin{aligned} x^{300} < 1728^{200}\\ \implies {{\sqrt{x}}^{2}}^{300} < {{12}^3}^{200}\\ \implies {\sqrt{x}}^{600} < {12}^{600}\\ \implies \sqrt{x} < 12\\ \text{Squaring on both sides}:-\\ \implies x < 144 \end{aligned}

So, the greatest possible integral value of x = ( 144 1 ) = 143 \text{So, the greatest possible integral value of x} = (144-1) = \boxed{143}

Rajat De
May 25, 2015

x ^ 300 < 1728 ^ 200 300 * log ( x ) < 200 * log ( 1728 ) 3 log x < 2 log 1728 now you can binary search for the answer.

int l = 1;

int r = 1000;

double res = log(1728) * 2;

while ( l < r ) {

    int mid = ( l + r ) >> 1 ;

    double temp = log(mid) * 3;

    if( temp < res ){

        l = mid;

    }

    else{

        r = mid - 1;

    }

}

cout << l;

Why bother with that when you can just do x = 10^(2/3 * log(1728)) in like 3 seconds?

Axelrod Polaris - 6 years ago

Log in to reply

Or, even better: change the above into 10^(log(1728))^(2/3) = 1728^(2/3).

Axelrod Polaris - 6 years ago
Sol Rey
Sep 29, 2020

Note that 172 8 200 1728^{200} is ( 1 2 3 ) 200 = 1 2 600 (12^{3})^{200} = 12^{600} and not 1 2 3 200 12^{3^{200}} , which is something ridiculous.

x 300 < 172 8 200 = 1 2 600 x^{300} < 1728^{200} = 12^{600}

Take the 300th root.

x < 1 2 600 × 1 2 1 300 = 1 2 600 300 = 1 2 2 = 144 x < 12^{600} \times 12^{\frac{1}{300}}= 12^{\frac{600}{300}} = 12^{2} = 144

Next smallest integer x x is 143 .

Amed Lolo
Jan 4, 2016

X^300<(12^2)^300,x^300<144^300,so x.max=143####

Syed Inteshar
Nov 18, 2015

X^300 < 1728^200 X^3 < 1728^2 X^3 < (2^4 . 3^2)^3 X < 2^4 . 3^2 X < 144

So the greatest possible...integral value is 143

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...