Quite remarkable

Algebra Level 4

{ x y + x + y = 23 y z + y + z = 31 z x + z + x = 47 \large{ \begin{cases}xy+x+y=23 \\ yz+y+z=31 \\ zx + z+x=47 \end{cases}}

Let x , y x,y and z z be numbers satisfying the system of equations above, enter your answer as the sum of all possible values of x , y x,y and z z .

This is part of the set My Problems and THRILLER


The answer is -6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ankit Kumar Jain
May 18, 2016

x y + x + y = 23 x y + x + y + 1 = ( x + 1 ) ( y + 1 ) = 24 y z + y + z = 31 y z + y + z + 1 = ( y + 1 ) ( z + 1 ) = 32 z x + z + x = 47 z x + z + x + 1 = ( z + 1 ) ( x + 1 ) = 48 \begin{aligned} xy + x + y = 23 \Rightarrow xy + x + y + 1 & = (x + 1)(y + 1) = 24 \\yz + y + z = 31 \Rightarrow yz + y + z + 1 & = (y + 1)(z + 1) = 32 \\zx + z + x = 47 \Rightarrow zx + z + x + 1 & = (z + 1)(x + 1) = 48\end{aligned}

( x + 1 ) 2 × ( y + 1 ) 2 × ( z + 1 ) 2 = 24 × 32 × 48 = 19 2 2 \Rightarrow (x + 1)^2\times{(y + 1)^2}\times{(z + 1)^2} = 24\times32\times48 = 192^2

( x + 1 ) × ( y + 1 ) × ( z + 1 ) = 192 \Rightarrow (x + 1)\times{(y + 1)}\times{(z + 1)} = 192 or ( x + 1 ) × ( y + 1 ) × ( z + 1 ) = 192 (x + 1)\times{(y + 1)}\times{(z + 1)} = -192 .

The former case leads to ( z + 1 ) = 192 24 = 8 , ( x + 1 ) = 192 32 = 6 , ( y + 1 ) = 192 48 = 4 ( x , y , z ) = ( 5 , 3 , 7 ) (z + 1) = \dfrac{192}{24} = 8 , (x + 1) = \dfrac{192}{32} = 6 , (y + 1) = \dfrac{192}{48} = 4 \Rightarrow \boxed{(x , y ,z) = (5 , 3 , 7)} .

The latter case leads to ( z + 1 ) = 192 24 = 8 , ( x + 1 ) = 192 32 = 6 , ( y + 1 ) = 192 48 = 4 ( x , y , z ) = ( 7 , 5 , 9 ) (z + 1) = \dfrac{-192}{24} = -8 , (x + 1) = \dfrac{-192}{32} = -6 , (y + 1) = \dfrac{-192}{48} = -4 \Rightarrow \boxed{(x , y ,z) = (-7 , -5 , -9)} .

Moderator note:

Simple standard approach. Well presented.

How can i post a picture?

Giuseppe Saya - 5 years ago

Log in to reply

@Giuseppe Saya On the top of the solution writing box there is a toolbar which contains the option image....just select it and the choose the required picture

Ankit Kumar Jain - 5 years ago
Hung Woei Neoh
May 18, 2016

x y + x + y = 23 xy+x+y = 23 \implies Eq.(1)

y z + y + z = 31 z ( y + 1 ) = 31 y yz+y+z = 31\\ z(y+1) = 31 - y

z = 31 y y + 1 z=\dfrac{31-y}{y+1} \implies Eq.(2)

x z + x + z = 47 z ( x + 1 ) = 47 x xz+x+z = 47\\ z(x+1) = 47-x

z = 47 x x + 1 z=\dfrac{47-x}{x+1} \implies Eq.(3)

Given that Eq.(2) = Eq.(3)

31 y y + 1 = 47 x x + 1 ( 31 y ) ( x + 1 ) = ( 47 x ) ( y + 1 ) 31 x + 31 x y y = 47 y + 47 x y x 32 x = 48 y + 16 2 x = 3 y + 1 3 y = 2 x 1 \dfrac{31-y}{y+1} = \dfrac{47-x}{x+1}\\ (31-y)(x+1) = (47-x)(y+1)\\ 31x+31-xy-y = 47y+47-xy-x\\ 32x=48y + 16\\ 2x=3y+1\\ 3y=2x-1

y = 2 x 1 3 y=\dfrac{2x-1}{3} \implies Eq.(4)

Substitute Eq.(4) into Eq.(1):

x ( 2 x 1 3 ) + x + 2 x 1 3 = 23 x ( 2 x 1 ) + 3 x + ( 2 x 1 ) = 69 2 x 2 x + 3 x + 2 x 1 69 = 0 2 x 2 + 4 x 70 = 0 x 2 + 2 x 35 = 0 ( x + 7 ) ( x 5 ) = 0 x = 7 , 5 x\left(\dfrac{2x-1}{3}\right) + x + \dfrac{2x-1}{3} = 23\\ x(2x-1) + 3x + (2x-1) = 69\\ 2x^2 - x + 3x + 2x -1 -69 = 0\\ 2x^2 + 4x - 70 = 0\\ x^2 + 2x - 35 = 0\\ (x + 7)(x - 5) = 0\\ x=-7,\;5

When x = 7 x=-7 :

y = 2 ( 7 ) 1 3 = 15 3 = 5 z = 47 ( 7 ) 7 + 1 = 54 6 = 9 y=\dfrac{2(-7)-1}{3} = \dfrac{-15}{3} = -5\\ z=\dfrac{47-(-7)}{-7+1} = \dfrac{54}{-6} = -9

When x = 5 x=5 :

y = 2 ( 5 ) 1 3 = 9 3 = 3 z = 47 5 5 + 1 = 42 6 = 7 y = \dfrac{2(5) - 1}{3} = \dfrac{9}{3} = 3\\ z=\dfrac{47-5}{5+1} = \dfrac{42}{6} = 7

Sum of all possible values of x x , y y and z z

= 7 5 9 + 5 + 3 + 7 = 6 =-7-5-9+5+3+7 = \boxed{-6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...