⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ x y + x + y = 2 3 y z + y + z = 3 1 z x + z + x = 4 7
Let x , y and z be numbers satisfying the system of equations above, enter your answer as the sum of all possible values of x , y and z .
This is part of the set My Problems and THRILLER
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Simple standard approach. Well presented.
How can i post a picture?
Log in to reply
@Giuseppe Saya On the top of the solution writing box there is a toolbar which contains the option image....just select it and the choose the required picture
x y + x + y = 2 3 ⟹ Eq.(1)
y z + y + z = 3 1 z ( y + 1 ) = 3 1 − y
z = y + 1 3 1 − y ⟹ Eq.(2)
x z + x + z = 4 7 z ( x + 1 ) = 4 7 − x
z = x + 1 4 7 − x ⟹ Eq.(3)
Given that Eq.(2) = Eq.(3)
y + 1 3 1 − y = x + 1 4 7 − x ( 3 1 − y ) ( x + 1 ) = ( 4 7 − x ) ( y + 1 ) 3 1 x + 3 1 − x y − y = 4 7 y + 4 7 − x y − x 3 2 x = 4 8 y + 1 6 2 x = 3 y + 1 3 y = 2 x − 1
y = 3 2 x − 1 ⟹ Eq.(4)
Substitute Eq.(4) into Eq.(1):
x ( 3 2 x − 1 ) + x + 3 2 x − 1 = 2 3 x ( 2 x − 1 ) + 3 x + ( 2 x − 1 ) = 6 9 2 x 2 − x + 3 x + 2 x − 1 − 6 9 = 0 2 x 2 + 4 x − 7 0 = 0 x 2 + 2 x − 3 5 = 0 ( x + 7 ) ( x − 5 ) = 0 x = − 7 , 5
When x = − 7 :
y = 3 2 ( − 7 ) − 1 = 3 − 1 5 = − 5 z = − 7 + 1 4 7 − ( − 7 ) = − 6 5 4 = − 9
When x = 5 :
y = 3 2 ( 5 ) − 1 = 3 9 = 3 z = 5 + 1 4 7 − 5 = 6 4 2 = 7
Sum of all possible values of x , y and z
= − 7 − 5 − 9 + 5 + 3 + 7 = − 6
Problem Loading...
Note Loading...
Set Loading...
x y + x + y = 2 3 ⇒ x y + x + y + 1 y z + y + z = 3 1 ⇒ y z + y + z + 1 z x + z + x = 4 7 ⇒ z x + z + x + 1 = ( x + 1 ) ( y + 1 ) = 2 4 = ( y + 1 ) ( z + 1 ) = 3 2 = ( z + 1 ) ( x + 1 ) = 4 8
⇒ ( x + 1 ) 2 × ( y + 1 ) 2 × ( z + 1 ) 2 = 2 4 × 3 2 × 4 8 = 1 9 2 2
⇒ ( x + 1 ) × ( y + 1 ) × ( z + 1 ) = 1 9 2 or ( x + 1 ) × ( y + 1 ) × ( z + 1 ) = − 1 9 2 .
The former case leads to ( z + 1 ) = 2 4 1 9 2 = 8 , ( x + 1 ) = 3 2 1 9 2 = 6 , ( y + 1 ) = 4 8 1 9 2 = 4 ⇒ ( x , y , z ) = ( 5 , 3 , 7 ) .
The latter case leads to ( z + 1 ) = 2 4 − 1 9 2 = − 8 , ( x + 1 ) = 3 2 − 1 9 2 = − 6 , ( y + 1 ) = 4 8 − 1 9 2 = − 4 ⇒ ( x , y , z ) = ( − 7 , − 5 , − 9 ) .